FRUSP	PROCEDIMENTO OPERACIONAL PADRÃO - POP	CIESCIA E HEMANISMO
Data: 01/07/2018		№: 016
Próxima revisão:	LABORATÓRIO DE METABOLISMO E LÍPIDES	Versão: 04
01/07/2019		Página 1

POP: Espectrofotômetro NanoDrop

Equipamento: Espectrofotômetro NanoDrop Modelo: 2000 Marca: Thermo Scientific

A. Objetivo

Padronizar o procedimento para quantificação/dosagem de ácidos nucléicos (DNA e/ou RNA) e proteínas, utilizando o *NanoDrop 2000 Spectrophotometer*.

B. Abrangência

Biólogos, Biomédicos, Farmacêuticos e Técnicos de Laboratório.

C. Definição

Este equipamento mede a concentração (quantidade) e pureza (qualidade) de amostras de ácidos nucléicos (DNA, RNA, cDNA 260nm), proteínas

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

FMUSP	PROCEDIMENTO OPERACIONAL PADRÃO - POP	CIÈNCIA E HEMANISMO
Data: 01/07/2018		№: 016
Próxima revisão:	LABORATÓRIO DE METABOLISMO E LÍPIDES	Versão: 04
01/07/2019		Página 2

purificadas (280nm) ou ensaios colorimétricos de proteínas (Bradford 595nm, Pierce 660 660nm, etc).

D. Observações importantes

- A faixa de leitura do NanoDrop 2000 Spectrophotometer vai da absorbância de 190nm até a de 840nm.
- ✓ Checar se os cabos estão conectados (equipamento+computador)
- Após o uso é indispensável limpar de maneira adequada o NanoDrop 2000.
 O uso de detergentes e álcool não é recomendado. Caso seja necessário, por exemplo, após dosagem de proteínas, recomenda-se o uso de solução de HCI 0,5M ou para descontaminação solução de hipoclorito de sódio 0,5%. Em seguida, sempre pipetar de 3,0–5,0 uL de água destilada ou Milli-Q e secar com lenço de papel.

E. Operacionalização

- 1) Abra o software na área de trabalho nomeado como "NanoDrop 2000".
- Escolha o tipo de amostra a ser lida: se ácido nucléico, células em suspensão ou proteína.
- O software perguntará se você quer que ele abra a última leitura feita, selecione a opção "NO".
- O software avisará que fará a rotina de verificação dos comprimentos de onda e para isso o braço do equipamento deve estar abaixado.

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

PROCEDIMENTO OPERACIONAL PADRÃO - POP

Data: 01/07/2018

Próxima revisão:

01/07/2019

LABORATÓRIO DE METABOLISMO E LÍPIDES

Versão: 04 Página 3

Nº: 016

- 5) Clique em "**OK**" para dar início à verificação.
- 6) Selecione que tipo de ácido nucléico (botão "Type", veja Figura 1), se DNA (verde) ou RNA (rosa). Caso tenha optado por proteína, a opção de leitura deve ter sido escolhida no início.
- Antes de começar a dosar suas amostras, é necessário pipetar o seu tampão de amostra, ou seja, o branco.
- 8) Levante o pedestal do NanoDrop 2000 e, com uma pipeta de 0-2,0 uL preferencialmente, pipete 1,0 uL, sem deixar formar bolhas (Figura 2), abaixe o pedestal e clique na opção "Blank" (canto superior esquerdo, veja Figura 1).

🔤 Nucleic Acid		×
File Help		
ک 🗢 🗢 🔊	Load your sample and press the measure button.	
Measure Print Blank Re-Blank		Sample ID: Pedestal
 Add to report Overlay spectra 	0.9	Type: DNA • 50,00
Small sample volume	0.8	Conc. ng/µl 🗸
	0.7	A260 (10 mm path)
	0.6 2	A280 (10 mm path)
	eg 0.5	260 / 280
	Sec. 0.4	260 / 230
	P 0.3	Baseline correction 340 nm
	0.2	
	0.1	
	0.0	
tione to the second sec	220 230 240 250 260 270 280 290 300 310 320 330 340 35 Wavelength nm	<u>«</u>
Measure Nucleic Acid	285nm	*
i Reports		
My Data		
🔯 Oligo Calc		
Options 0		
ş		
0		lbliss-09
🛃 Iniciar 🞯 🏉 💿 📃 📜 NanoDrop 2	10 User Ma 🔁 modelo avancado POP.p 🔄 nanodrop.docx - Microso 🔳 Nucleic Acid	🛅 🖮 🕐 🐔 😏 🍪 🔍 K 🖉 🕍 🌄 15:28

Figura 1. Layout do software do NanoDrop 2000 Spectrophotometer com suas

opções de leitura.

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

FMUSP	PROCEDIMENTO OPERACIONAL PADRÃO - POP	CIÈNCIA E HEMANISMO
Data: 01/07/2018		№: 016
Próxima revisão:	LABORATÓRIO DE METABOLISMO E LÍPIDES	Versão: 04
01/07/2019		Página 4

Figura 2. Pedestal levantado para a aplicação da amostra com uma pipeta de 0-2,0 uL, evitando a formação de bolhas. Caso a leitura se apresente negativa ou estranha, provavelmente houve a formação de bolhas. Por isso, limpe e repita a pipetagem.

- Após o branco ter sido pipetado, o NanoDrop 2000 está pronto para iniciar as dosagens das suas amostras.
- Levante o pedestal, enxugue qualquer resíduo com lenço de papel seco (Figura 3) e aplique sua amostra no volume desejado (de 0,5–2,0 uL), sem deixar formar bolhas.
- 11) Caso queira pipetar apenas 0,5 uL, selecione a opção "Small sample volume" (canto superior esquerdo, veja Figura 1), identifique sua amostra no campo "Sample ID" (canto superior direito, veja Figura 1) e clique em

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

PROCEDIMENTO OPERACIONAL PADRÃO - POP

Data: 01/07/2018

Próxima revisão:

01/07/2019

LABORATÓRIO DE METABOLISMO E LÍPIDES

"**Measure**" (canto superior esquerdo, veja Figura 1), que só estará liberado (ficará na cor verde) quando o "**Blank**" tiver sido feito.

- 12) No momento em que você pedir para o NanoDrop 2000 medir sua primeira amostra, ele abrirá a tela para você salvar seus resultados. Depois de escolhido o nome para seu arquivo e local onde será salvo, o NanoDrop 2000 apresentará o gráfico e leitura da sua amostra.
- 13) Você também tem a opção de escolher se quer que o NanoDrop 2000 apresente as curvas sobrepostas ou individualmente. Caso opte pelas sobrepostas, selecione a opção "Overlay spectra" (canto superior esquerdo, veja Figura 1).
- Depois de pipetada sua amostra, limpe com lenço de papel seco tanto a base quanto o pedestal, regiões que entraram em contato com a amostra, e o NanoDrop está pronto para nova dosagem.
- 15) Por último, quando você terminar de usar o NanoDrop 2000, limpar a base e o pedestal que entraram em contato com as amostras dosadas, com um lenço de papel umedecido com água Milli-Q. Abaixar o pedestal.
- Para exportar seus dados para uma planilha de Excel, clique em "Reports" (canto inferior esquerdo) e abrirá uma tela com todos os seus resultados tabelados e gráficos (Figura 4).
- No canto superior esquerdo aparecerão as opções tanto de imprimir ("Print") quanto à de exportar para o Excel ("Export") (Figura 4).

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

FRUSP	PROCEDIMENTO OPERACIONAL PADRÃO - POP	CIÈNCIA E REMANISNO
Data: 01/07/2018		№: 016
Próxima revisão:	LABORATÓRIO DE METABOLISMO E LÍPIDES	Versão: 04
01/07/2019		Página 6

Figura 3. Limpeza do aparelho após leitura. **A-** com um lenço de papel seco, limpe a base do pedestal, onde a amostra é aplicada. **B-** limpe também, com um lenço de papel, a região do pedestal que entra em contato com a amostra.

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por: Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	

Figura 4. Tabela com os dados a serem exportados ou impresso.

200ratorilo

Elaborado por: Fátima Rodrigues de Sousa e Freitas	Aprovado por:
	Prof. Dr. Raul Cavalcante Maranhão
Revisado por: Priscila Oliveira de Carvalho	