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Abstract—An overview is presented of the medical image pro-
cessing literature on mutual-information-based registration. The
aim of the survey is threefold: an introduction for those new to the
field, an overview for those working in the field, and a reference for
those searching for literature on a specific application. Methods
are classified according to the different aspects of mutual-infor-
mation-based registration. The main division is in aspects of the
methodology and of the application. The part on methodology de-

at the basics, with the definition of entropy and its interpretation.
We then turn to mutual information, presenting its history in
image registration, its multiple forms of definition and its prop-
erties. For arecent general introduction to and review of medical
image registration, including many references to mutual-infor-
mation-based methods, we refer to [1] and [2].

The survey classifies methods into two main categories:

scribes choices made on facets such as preprocessing of imagesnethodological aspects and matters of application. The aspects
gray value interpolation, optimization, adaptations to the mutual of the method are subdivided into preprocessing, measure,
mformatlon measure, and pllffgrent_types of geometrical t_ransfor- transformation, and implementation, most of which have a
mations. The part on applications is a reference of the literature L L .
available on different modalities, on interpatient registration and further subcle_15_3|f|cat|on. A_spects of f{he a_ppl|cat|qn entail the
on different anatomical objects. Comparison studies includingmu- image modalities, the subject of registration (a single person
tual information are also considered. The paper starts with a de- or different persons) and the object of registration (the imaged
scription of entropy and mutual information and it closes with a  anatomy). We also classify according to the image dimension-
discussion on past achievements and some future challenges. ality and the number of images involved in registration.

Finally, having considered a number of comparison studies,
we discuss the results of seven years of research and also some
challenges that still lie ahead.

Index Terms—mage registration, literature survey, matching,
mutual information.

. INTRODUCTION
Il. ENTROPY

HERE are two things Collignon and colleagues and

Viola and Wells probably did not foresee when they were o .
working on a new idea in approximately 1994. First of all, th hiropy of a message stems from communication theory. This

someone else had the same idea and, second, that this new 1§& concemns the broadcast of a message from a sender to a
would lead to a list of publications as long as the one in thigceiver. The first attempts to arrive at an |nfo_rmat|on mgasgre
paper, in only seven years. This survey covers the literanfb@ message focused on telegraph and radio communication,
until spring 2002. Actually, the “true” list is longer—in thesendmg Morse code or word; Howgver, picture transmission
first place, because we have left out redundant publicatiof{glevision) was already considered in the important paper by
and because we are bound to have missed some publicatibt@tley [3]. In 1928, he defined a measure of information of
Second, mutual-information-based registration has becomé&essage that forms the basis of many present-day measures.
common place in many clinical applications. There is a wealthe considered a message a string of symbols, witifferent

of papers mentioning the use of the method as a step in a largessibilities for each symbol. If the message consists ©fm-
method or in an application. These papers were generally hois, there are™ different messages possible (assuming there
included, except when the modality involved or the applicaticare no syntactic rules). He sought to define an information mea-
was unusual. sure that increases with message length. The meaSuwem-

In the following, we aim to introduce and explain mutual inplies, but the amount of information would increase exponen-
formation and to give an overview of the literature on mutual-irtially with the length of the message and that is not realistic.
formation-based registration for medical applications. We statrtley wanted a measufé that increases linearly with, i.e.,

H = Kn, whereK is a constant depending on the number of
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number of possible messages, the larger the amount of info
mation you get from a certain message. If there is only a singl
message possible, you gain no informatidsg 1 = 0) from

it, because you already knew you would receive that messag
In this respect, the measure can also be viewed as a measure
uncertainty When there are more different messages you coul
possibly receive, you are more uncertain which one you will

. - . . (€Y (b) (©
actually receive. And, again, if there is only one, there is no un-
certainty Fig. 1. Example of a feature space for (a) a CT image and (b) an MR image.

, . . (c) Along the axes of the feature space, the gray values of the two images are
A drawback of Hartley’s measure is that it assumes all Symwtted: from left to right for CT and from top to bottom for MR. The feature

bols (and, hence, all messages of a given length) are equan?ce is constructed by counting the number of times a combination of gray

; ; ; alues occurs. For each pair of corresponding pdirty ), with x a point in
likely to occur. Clearly, this will often not be the case. In th%1e CT image ang’ a point in the MR image, the entic-(x), I (y))

previous paragraph, for example, the letter “e” has occurrgQhe feature space on the right is increased. A distinguishable cluster in the
229 times and the letter “q” only twice. Shannon introduced denture space is the stretched vertical cluster, which is the rather homogeneous

adapted measure in 1948 [4] which Weights the information p% a of brain in the CT image corresponding to a range of gray values for the
el i ) image.

outcome by the probability of that outcome occurring. Given 9

eventsey, ..., e, occurring with probabilitie®, ..., p,., the

Shannon entropis defined as

language has dropped to 1.25. There is less uncertainty about
) which word the child will utter. Whatever you ask, the answer
_ oo — — ‘ ‘ is almost certainly “no.”
" zi:pz tog Di zi:pl logp:. @ The Shannon entropy can also be computed for an image, in
L}ze(hich case we do not focus on the probabilities of letters or
words occurring, but on the distribution of the gray values of
the image. A probability distribution of gray values can be esti-
H=— Z 1 log 1 _ Z in log s™ =logs™  (3) mated by counting the number of times each gray value occurs
§ in the image and dividing those numbers by the total number of
which is exactly Hartley’s entropy. occurrences. An image consisting of almost a single intensity
Although the second definition of the Shannon entropy in (il have a low entropy value; it contains very little information.
is more commonly used, the first one more clearly explains ﬂ,l@high entropy value will be yielded by an image with more or
meaning. The terniog(1/p;) signifies that the amount of in- |ess equal quantities of many different intensities, which is an
formation gained from an event with probabiljty is inversely image containing a lot of information.
related to the probability that the event takes place. The morep, this manner, the Shannon entropy is also a measure of dis-
rare an event, the more meaning is assigned to occurrencg&fsion of a probability distribution. A distribution with a single
the event. The information per event is weighted by the probgnarp peak corresponds to a low entropy value, whereas a dis-
bility of occurrence. The resulting entropy term is theerage persed distribution yields a high entropy value.
amount of information to be gained from a certain set of events.symmarizing, entropy has three interpretations: the amount
In line with Hartley’s entropy, we can also view Shannon’gs information an event (message, gray value of a point) gives
entropy as a measure of uncertainty. The difference is th@en it takes place, the uncertainty about the outcome of an

Shannon’s measure depends not only on the number of possiijent and the dispersion of the probabilities with which the
messages, but also on the chances of each of the messaggfts take place.

occurring. When all messages are equally likely to occur, the

entropy is maximal, because you are completely uncertain . M UTUAL INFORMATION
which message you will receive. When one of the messages has |
a much higher chance of being sent than the other messagesHiStory

the uncertainty decreases. You expect to receive that on&he research that eventually led to the introduction of mu-
message and in most cases you will be right. The amounalinformation as a registration measure dates back to the early
of information for the individual messages that have a smdlD90s. Woodet al. [5], [6] first introduced a registration mea-
chance of occurring is high, bubn averagethe information sure for multimodality images based on the assumption that re-
(entropy/uncertainty) is lower. As a hypothetical example, lgfions of similar tissue (and, hence, similar gray values) in one
us assume a 1-yr old child uses the words “mummy,” “daddyifhage would correspond to regions in the other image that also
“cat,” and “uh-oh.” If the child uses all words almost as freeonsist of similar gray values (though probably different values
guently, with a slight preference for “mummy,” the respectivid those of the first image). Ideally, the ratio of the gray values
percentages of times the words are used could be 0.35, Ga2,all corresponding points in a certain region in either image
0.2, and 0.25. The entropy of the child's language is thesaries little. Consequently, the average variance of this ratio for
—0.3510g0.35 — 0.21log 0.2 — 0.2log 0.2 — 0.25l0g0.25 = all regions is minimized to achieve registration.

1.96. Some time later, the vocabulary may have expanded andHill et al.[7] proposed an adaption of Woods’ measure. They
changed to (“mummy” 0.05), (“daddy” 0.05), (“cat” 0.02),constructed deature spacewhich is a two-dimensional (2-D)
(“train” 0.02), (“car” 0.02), (“cookie” 0.02), (“telly” 0.02), and plot showing the combinations of gray values in each of the two
(“no” 0.8). Now one word is dominant and the entropy of themages for all corresponding points. Fig. 1 shows an example

If we apply to Shannon’s entropy the assumption that all o
comes are equally likely to occur, we get
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.
@ (b) (© (d)

Fig. 2. Jointgray value histograms of an MR image with itself. (a) Histogram shows the situation when the images are registered. Because thielentigals are
all gray value correspondences lie on the diagonal. (b), (c), and (d) show the resulting histograms when one MR image is rotated with respecbtoahglethe
of 2°, 5°, and 10, respectively. The corresponding joint entropy values are (a) 3.82; (b) 6.79; (c) 6.98; and (d) 7.15..

of such a feature space for a magnetic resonance (MR) andithin a few years it became the most investigated measure for

computed tomography (CT) image. The difference with Woodsiedical image registration.

method is that instead of defining regions of similar tissue in the o

images, regions are defined in the feature space. These reg@ndefinition

are based on the clustering one finds in the feature space foMost books on information theory ([16]-[18], for example)

registered images. discuss the notion of mutual information. The definition of the
The feature space (or joint histogram) changes as the aligerm, however, can be presented in various ways. We will next

ment of the images changes. When the images are correetiat three frequently used forms of the definition, because more

registered, corresponding anatomical structures overlap andign one is used in the literature. All three forms are identical;

joint histogram will show certain clusters for the gray values @&fach can be rewritten into the other tw&ach form of defini-

those structures. For example, the cluster in the top left cornetigh, however, explains the relation to registration in a different

the histogram in Fig. 1 is the combination of background in bothay. We will describe mutual information for two images, as

images. As the images become misaligned, structures will algsed in image registration, and not in a general sense.

start overlapping structures that are not their anatomical coun-The first form of definition we discuss is the one that best

terparts in the other image. Consequently, the intensity of thgplains the term “mutual information.” For two imagésand

clusters for corresponding anatomical structures will decreaBe mutual information/ can be defined as

and new combinations of gray values emerge such as skull and I(A,B) = H(B) — H(B| A) (5)

brain or skin and background. This will manifest itself in the

joint histogram by a dispersion of the clustering. Fig. 2 contaiffd1€reé (B) is the Shannon entropy of imagg computed on

several histograms of an MR image with itself for different rotn€ Probability distribution of the gray value (5 | A) denotes

tations of one image with respect to the other. Clearly, the hike conditional entropy, which is based on the conditional prob-

togram shows increasing dispersion as the misregistration gliti€s p(b| a), the chance of gray valuein image B given
creases. that the corresponding voxel id has gray value.. When in-

Using this characteristic of the joint histogram of two imi€/Preting entropy as a measure of uncertainty, (5) translates to
ages, measures of dispersion emerged, to use for image regft @mountof uncertainty aboutimageminus the uncertainty
tration. Hill et al. [8] proposed the third-order moment of theAPOULB whenA is known.” In other words, mutual information
joint histogram, which measures the skewness of a distributidh 1€ amount by which the uncertainty abétdecreases when
Both Collignonet al.[9] and Studholmet al. [10] suggested to <! IS given: the amount of information contains abouss. Be-
use entropy as a measure of registration. As we have explaif@S&! andB can be interchanged( 4, B) is also the amount
in Section I, entropy measures the dispersion of a probabil@) information3 contains aboutl. Hence, itisnutualinforma-
distribution. It is low when a distribution has a few sharply deion- Registration is assumed to correspond to maximizing mu-
fined, dominant peaks and it is maximal when all outcomes ha{&! information: the images have to be aligned in such a manner
an equal chance of occurring. A joint histogram of two imagégat j[he amount of information they contain about each other is
can be used to estimate a joint probability distribution of thefpaximal. L .
gray values by dividing each entry in the histogram by the total The secqnd form of definition is most closely related to joint
number of entries. The Shannon entropy for a joint distributigftropy. Itis

is defined as I(A,B)=H(A)+ H(B) — H(A, B). (6)
o o This form contains the term H (A, B), which means that max-
B ZP(Z’J)IOgM"’J)' 4)  imizing mutual information is related to minimizing joint en-
"I tropy. We have described above how the joint histogram of two
By finding the transformation that minimizes their joint entropymages’ gray values disperses with misregistration and that joint
images should be registered. entropy is a measure of dispersion. The advantage of mutual in-

Once entropy, a measure from information theory, had beffmation over joint entropyer sg is that it includes the en-
introduced for the registration of multimodality medical image$fopies of the separate images. Mutual information and joint en-

another such measure quickly appeared: mutual informatidfpPy are computed for the overlapping parts of the images and
It was pioneered both by Collignoet al. [11], [12], and by the measures are therefore sensitive to the size and the contents

Viola a.nd.WeIIs [13]—[15]..Appl|ed.to rigid registration of multl— We conjecture that the identity of the three definitions only holds for the
modality images, mutual information showed great promise astannon entropy and we invite anyone to prove of refute this hypothesis.
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TABLE |
CLASSIFICATION SCHEME FORMUTUAL -INFORMATION-BASED REGISTRATION METHODS

Method Application

Preprocessing Modalities

Measure monomodality
entropy multimodality
normalization modality to model
spatial information modality to physical space

Transformation Subject

" rigid intrasubject

affine intersubject
perspective model
curved

Implementation Object

interpolation
pdf estimation
optimization
acceleration

Image dimensionality Number of images
2D/2D 2
3D/3D > 2, with known inter-image geometry
2D/3D > 2, with unknown inter-image geometry

of overlap. A problem that can occur when using joint entropg@. Properties
on its own, is that low values (normally associated with a high
degree of alignment) can be found for complete misregistra-
tions. For example, when transforming one image to such an ex-
tent that only an area of background overlaps for the two images,
the joint histogram will be very sharp. There is only one peak,
that of background. Mutual information is better equipped to
avoid such problems, because it includes the marginal entropies
H(A) and H(B). These will have low values when the over-
lapping part of the images contains only background and high
values when it contains anatomical structure. The marginal en-
tropies will thug balance the measure somewhat' by penghzmg to the information (entropy) of imagd.
for transformations that decrease the amount of information in
) : o 3) I(A,B) < H(A),I(A,B) < H(B).

the separate images. Consequently, mutual information is less : : : .

. - The information the images contain about each other
sensitive to overlap than joint entropy, although not completely ) S .

can never be greater than the information in the images

immune. themselves
The final form of definition we discuss is related 4) I(A,B) > 0.

to the Kullback-Leibler distance, which is defined as . .
) . . L . The uncertainty aboutd cannot be increased by
>, p(i) log(p(i)/q(i)), for two distributionsp and q. It is a .
i ; L learning about3.
measure of the distance between two distributions. Analogous

to the Kullback—Leibler measure, the mutual information of 5) I(A, B) = 0 if and only 'ff4 andp are independent.
. . . When A and B are not in any way related, no knowl-
imagesA and B is defined as

) edge is gained about one image when the other is given.
1(4,8) = Y pla b log 2420 (7)

a7
p(a)p(b) IV. SURVEY OF LITERATURE

Mutual information has the following properties [16].
1) I(A,B) = I(B, A).

It is symmetric; otherwise it would not bautualin-
formation. However, although it is a logical property in
theory, mutual information is not symmetric in practice.
Implementational aspects of a registration method, such
as interpolation and number of samples, can result in dif-
ferences in outcome when registeringo B or B to A.

2) I(A,A) = H(A).
The information image! contains about itself is equal

a,b

The interpretation of this form is that it measures the distanceFor our survey of the different aspects of mutual-informa-
between the joint distribution of the images’ gray valpués b) tion-based registration, we have defined a classification scheme,
and the joint distribution in case of independence of the imageghich builds on earlier schemes for medical image registration
p(a)p(b). It is a measure oflependencéetween two images. in general [19], [20]. The mutual information scheme is pre-
The assumption is that there is maximal dependence betwsented in Table I.

the gray values of the images when they are correctly alignedThe main subdivision of the classification is in aspects
Misregistration will result in a decrease in the measure. concerning thanethodand those concerning trapplication
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In addition, the classesnage dimensionalityand number of sity inhomogeneities inimages are corrected in several methods,
imagesare defined. The elements of these two subclasses dath for MR images [29], [46] and for portal images [47]. Some
concern purely the application, but they can also necessitatethods resample the images isotropically, to achieve similar
an adaptation of the method. They are therefore treated sepxel sizes in all image dimensions [21], [35], [43], [44], [48],
arately. The class “Method” can be further subdivided int@9], others resample to obtain similar voxel sizes in the images
preprocessingmeasure transformation and implementation to be registered [22].

Preprocessing entails any image processing to prepare or

improve the images for registration. Typical examples a2 Measure

filtering to remove noise, extraction of regions of interest and Obviously, in a literature survey on mutual-informa-
isotropic resampling. The measure will obviously be (based ofyn-pased image registration, the measure in question will
mutual information, but differences are possible, characterizgf\';vayS be mutual information. However, when using a def-
by the choice of entropy, by normalization and by adaptatiofgtion of mutual-information-based on entropy, different
to incorporate spatial information. The transformation can b initions of entropy can be chosen. Furthermore, several
classified as either rigid (rotations and translations only), aﬁi%aptations of mutual information have been proposed: nor-
(rigid plus scaling and shearing), perspective (affine withoytajization with respect to the overlapping part of the images
preservation of parallelism of lines) or curved. Implementatiof\§ inclusion of spatial information.

is an important category, because the choice of method fory fey recently proposed methods do not adapt the mutual
interpolation, probability distribution function (pdf) estimation;ormation measure, but cannot be considered standard imple-
0pt|m|zat|qn an_d acceleration can have a substantial influeng@ntations either. Butz and Thiran [50] compute feature images
on the registration results. gradients) of which the mutual information is calculated. Nyl

The first aspect of the class “Application” is the type Oét al. [51] evaluate the mutual information of “scale images”:
modalitiesit concerns. The images can be of the same kiRfe value of a voxel is the radius of the largest sphere which is
(monomodeality), acquired by different techniques (multicentred at the voxel and which falls completely within a single
modality), a type of model can be involved (a phantom or a“aébject.
for example) or images are registered to physical space. By tha) Entropy: By far the most common measure of entropy in
latter we mean registration of previously acquired images {Re papers in this survey is the Shannon entropy [4]. Rodriguez
a person, as is used for image-guided surgery or radiothergpy |oew [52], [53] use the Jumarie entropy [54]. The Jumarie
treatment.Subjectdenotes whether images of a single persaghiropy is defined for one-dimensional (1-D) signals and resem-
are involved, which is callemhtrasubject registration, or imagesp|es a normalized version of Shannon entropy, applied not to
of different personsintersubject registration, or whether im-5 probability distribution, but to function value differences of
ages of a person are matched to a model. Finally, the anatogdyghboring samples. In [52], 2-D images are registered. The
that the registration focuses on is what we terfoject authors define the Jumarie entropy of a 2-D image on the gra-

Ofimage dimensionalitywe have found instances of 2-D/2-D dient magnitude of pixels. The joint Jumarie entropy is defined
3-D/3-D, and 2-D/3-D registration in the literature. Tingmber on the gray value difference of Corresponding pixe|s, which pre-
of imagesinvolved in the registration is usually 2, but registrasumably makes the measure less suitable to registration of mul-
tion of more than two images has been described in a numbefigfodality images. loannidet al.[55] use the Rényi entropy of
publications. The latter aspect can be further divided into I’eg'ﬁrder 4, a|though not for image registration, but for Comparison
tration problems where the transformations between several igi-brain activity during different tasks. The Rényi entropy of
ages are known and only a single transformation is to be fouggtier 2 is employed by Pomp¢al.[56] to measure the strength
or problems that require several transformations. of dependence between 1-D respiratory and cardiac signals.

In the following, we will discuss most categories of our 2) Normalization: The size of the overlapping part of the
scheme. Some aspects are so dominant in the literature (fakges influences the mutual information measure in two ways.
example, 3-D/3-D registration), that we will only review therirst of all, a decrease in overlap decreases the number of sam-
exceptions. We have also taken the liberty to focus on thgs, which reduces the statistical power of the probability dis-
aspects thatve find most interesting. After the classificationtribution estimation. Second, Studholraeal. [43], [44] have
scheme, we will consider a number of comparison studies. shown that with increasing misregistration (which usually coin-

cides with decreasing overlap) the mutual information measure
A. Preprocessing may actuallyincrease This can occur when the relative areas
of object and background even out and the sum of the marginal

Several techniques of processing images before registratifiropies increases, faster than the joint entropy. Studhetme
have been described. The most common preprocessing stegl.iproposed aormalizedmeasure of mutual information [44],
defining a region [21], [22] or structures [23]-[38] of interest invhich is less sensitive to changes in overlap
the images to exclude structures that may negatively influence H(A) + H(B)
the registration results. Other processing techniques reported in- NMI(A,B) = ——~———"~
clude low-pass filtering to remove speckle in ultrasound images H(A,B)

[33], [38]-[40] and thresholding or filtering to remove noiselhey found a distinct improvement in the behavior of the nor-
[41], [42]. Blurring is also applied to correct for differencesnalized measure for rigid registration of MR-CT and MR-PET
in the intrinsic resolution of the images [34], [43]-[45]. Inten{positron emission tomography) images.
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Collignon [11] and Maes [57] have suggested the use of tbe of the brain when neither skull nor dura has been opened.
entropy correlation coefficie(ECC), another form of normal- Rigid registration of images based on mutual information has
ized mutual information. NMI and ECC are related in the folbeen applied in a large number of papers [11], [12], [21]-[23],
lowing mannerECC = 2 — 2/NMI. [27], [31], [35], [41], [43]-[45], [47], [49], [51], [53], [57],

Normalized mutual information was used in a large numb&?3], [71], [83]-[101]. Rigid registration is also used to approx-
of studies [24], [26], [30], [32], [36], [37], [42], [48], [58]-[77]. imately align images that show small changes in object shape

An upper bound of mutual information was derived by SKfor example, successive histological sections [102], [103]
ousonet al.[78]. and serial MR images [24], [26]) or small changes in object

3) Spatial Information: A drawback of mutual information intensity, as in functional MR time series images [93], [104].
as it is commonly used, i.e., based on the Shannon entropy, ig) Affine: The affine transformation preserves the paral-
that the dependence of the gray values of neighboring voxeldaism of lines, but not their lengths or their angles. It extends
ignored. The original Shannon entropy [@desinclude a de- the degrees of freedom of the rigid transformation with a
pendence of preceding signals, but the definition used in pr&&aling factor for each image dimension [25], [32], [58], [105],
tice is the one for independent successive signals. The assuf#gf] and, additionally, a shearing in each dimension [13], [28],
tion of independence does not generally hold for medical if38], [99], [107], [108]. In [109], [110] an affine registration
ages. Incorporating the dependence of the gray values of neigfith nine degrees of freedom is performed to correct calibra-
boring voxels, what we term the spatial information of the infion errors in the voxel dimensions. Holden [110] furthermore
ages, could improve registration. measures theelative scaling error between scans. Shekhar

As mentioned, Rodriguez and Loew [52] employ the Jumar@d Zagrodsky [33] compare registration of ultrasound images
entropy, which considers the gray value differences of neighsing transformations of increasing complexity (rigid, rigid
boring voxels in an image. Studholne¢ al. [79] compute the With uniform scaling, rigid with nonuniform scaling and fully
mutual information of two images together with a labeling o#ffine).
one of the images. Voxels with identical gray values can then3) Curved: Curved registration methods can differ on sev-
be differentiated when they belong to different regions. The ugéal aspects. The mutual information measure can be calculated
of a cooccurrence matrix has been put forth by Ruedieal. globally, on the entire image, or locally, on a subimage. Smooth-
[80]. The cooccurrence matrix of distandeof an image is a ness of the deformation can be achieved in different ways and
2-D histogram giving the frequencies of two gray values in tH8e deformation can be either free-form (any deformation is al-
image being distanceé apart. Rueckeret al. show the effect lowed) or guided by an underlying physical model of material
the method has on curved registration of MR images. Anotheioperties, such as tissue elasticity or fluid flow. Besides these
method of incorporating spatial information is to combine mwspects, methods can also differ in smaller, implementational
tual information with a measure based on the gradients at cggtails, but such differences will not be discussed.
responding points. The measure seeks to align gradient vector¥leyeret al.[39], [111]-{116] compute the mutual informa-
of large magnitude as well as of similar orientation [69], [81fion measure globally. The deformation is determined by thin-
A slightly adapted version of the measure is used by Létjon@fate splines through a number of control points, which are ini-
and Mékela for curved registration [82]. tialized by the user, but are adapted automatically. The number

of control points defines the elasticity of the deformation. Apart
from registration of 3-D multimodality images, the method was
C. Transformation applied to warp a slice into a volume, including out-of-plane de-
formations [117]. Also computing both measure and deforma-

The transformation applied to register the images can be ctidn globally is Horsfield [118], who uses a third-order polyno-
egorized according to the degrees of freedom. We defiiggch  mial to nonuniformly correct MR images for eddy current dis-
transformation as one that includes only translations and rotartion.
tions. Although in the literature, rigid transformations are some- Other methods compute the mutual information globally, but
times allowed to include scaling, we classify such transforméind the deformation on a local scale. A grid of control points
tions asaffine An affine transformation can furthermore in-is defined to determine the deformation, usually in a multires-
clude shearing. This type of transformation maps straight linekition manner. The points of the grid are moved individually,
to straight lines and preserves the parallelism between lindgfining local deformations. Transformations in between con-
The perspectivaransformation differs from the affine transfor-trol points are propagated by linear interpolation [29], [119],
mation in the sense that the parallelism of lines need not Baussian kernels [120] or other symmetrical, convex kernels
preserved. It is usually applied in 2-D/3-D registration. No in82], [121]. Rueckeret al.[74], and Studholmet al.[37], [76]
stances of “true” perspective transformation were encounterediculate B-splines through the control points, which have a
All methods using a perspective transformation limited the ofiscal region of influence (as opposed to thin-plate splines). A
timization to the rigid-body or affine parameters; the projectivemilar method is employed in [72], [73], [122]. The effect of
parameters were kept fixed. The final class consistsuofed the choice of transformation (rigid, affine or curved) on regis-
transformations, which allow the mapping of straight lines ttation of MR breast images was studied by Dergbal. [62].
curves. The method by Rueckert was adapted to allow for rigid struc-

1) Rigid: Translations and rotations suffice to registetures within deformable tissue by Tanm@al.[77] through fix-
images of rigid objects. Examples include registration of boraion of intercontrol point distances. A nonuniform deformation
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grid of active and passive control points is described in [75]. Ap- n ;

plications of the method include propagation of segmentations

[42],[61] and the construction of a statistical deformation model T(x)

[123].
Contrary to the previous methods which compute mutual in- W, w,

formation globally, some methods compute the mutual infor- n, n,

mation measure for subsets of the images [30], [46], [60], [65],

[124], [125]. A problem with local computation of mutual in-Fig. 3. Interpolation weights; the areas for 2-D linear interpolation.

formation is that the results can suffer from the small number of

samples. Usually, relatively large subimages are required, whigh interpolationduring the registration process, which is ap-

prohibits deformations on a very small scale. Several adapm]—ed numerous times and which, consequently, necessitates a

tions have been proposed to overcome this problem. Likar afidyeoff hetween accuracy and speed. In addition, interpolation
Pernis [66] define local probabilities as a weighted comblnatlog required to yield a final, registered image. Since this task is

of the probability distribution of a subimage and the global digserformed only once, speed is less of an issue and a different
tribution. Maintzet al.[126] compute a conditional probability -, qice of interpolation method (e.g., a higher order method)
distribution of intensities in one image given intensities in thﬁlay be more appropriate.

other image, based on a global joint histogram. Using the CON~rpe most popular technique of interpolation is linear inter-

di_tional distribution, translations of subimages are compute&maﬂon, which defines the intensity of a point as the weighted
Finally, Rueckeret al. [80] enhance the power of locally com-¢pination of the intensities of its neighbors. The weights are
puted measures by_lncludmg spatial information, in the form ﬂf]early dependent on the distance between the point and its
cooccurrence matrices. neighbors, as shown in the 2-D example in Fig. 3. A handful
Hermosillo and Faugeras [127] compare global and 08} papers report the use of nearest neighbor interpolation
computatlon of both mutual information anq thg Co"e'at'othssigning the gray value of the spatially closest neighbor),
ratio [128]. Schnabett al. [129] propose a validation methodyten for speed [32], [47], for comparison to other interpolation
for curved registration, which is demonstrated on mutughethods [57], [101] or for the initial testing of a novel idea [52].
information. An interpolation method specifically designed to create joint
Most methods ensure smoothness of the deformation fiejgstograms of intensities is partial volume interpolation, intro-
by filtering of the vector field (e.g., [29], [64]-{66], [130]) duced by Collignon [12]. It uses the weights of linear interpola-
and/or by regularization terms to constrain local deformatioggn but not to compute a weighted intensity and update a single
(e.g., [29], [30], [36], [74], [75], [82], [125], [127]). Rohlfing histogram entry, like linear interpolation. It uses the weights for
and Maurer [73] incorporate a regularization term that preverf§ctional updates of the histogram entries corresponding to a
compression of contrast-enhanced structures. transformed point and each of its neighbors. Effectively, this cre-
To the best of our knowledge, there are only two papers @fes smoother changes of the joint histogram for varying trans-
inclusion of physical models of tissue deformation in mutuatyrmations and hence a smoother registration funétigfhe

information-based curved I’egiStI’ation methods. Both ldbsd, method has been adopted by several others [33]' [57], [70], [88]'
[124] and Hermosillo and Faugeras [127] use a model of a96], [125].

elastic solid material for regularization of the deformation. Maes [92] introduced partial intensity interpolation. This
method calculates a weighted average of the neighboring gray
D. Implementation values, identical to linear interpolation. Then, however, two

) ) ) ) histogram entries (those corresponding to the floor and the
The importance of the implementation of a mutual-informaseijling of the weighted average) are updated by a fractional

tion-based method should not be underestimated, since imlgiount.

mentational decisions can have a large influence on the regisThévenaz and Unser [97] are advocates of higher order in-
tration results. The main choices involve interpolation, estimggrpdaﬂon methods. They suggest cubic interpolation, partic-
tion of the probability distributions and optimization. Additionjarly in multiresolution methods. Cubic spline interpolation is
ally, one may choose to improve the speed of registration. ZBlso ysed in [104] and [122]. Fig. 4 shows 1-D interpolation ker-
and Cochoff [101] study the influence of several implementgg|s for linear, cubic and sinc interpolation. Sinc interpolation is
tion choices, viz. optimization method, interpolation methogie jgeal kernel in theory, but it is impractical for two reasons:
number of histogram bins and multiresolution approaches. T’D}?the images are expected to be band-limited, which medical
choice of implementation remains a matter of debate. An Opnages rarely are and 2) the width of the kernel is infinite. The
timal implementation has not been agreed on, partly becausic kernel has a larger extent than linear interpolation and is,
all aspects of the implementation interact. For instance, ofyrefore, more expensive to compute, but does approximate the
cannot compare optimization methods without taking the othgihc kernel better. The influence of the order of the interpolation
aspects into account, because these influence the smoothnegsstfod is studied by Netse al. [93].

the function to be optimized. A serious problem with interpolation is that it can cause pat-

1) Interpolation: When transforming points from oneterns of artefacts in the registration function. When the grids of
image to another, interpolation is usually required to estimate

the gray value of the resulting point. In this section, we focus2The registration measure as a function of transformation.
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os o o8 Whereas the simple histogram method places a spike function
of value 1 at the bin correspondingd¢@and updates only a single
. bin, Parzen windowing places a kernel at the binahd updates
S A — “I A — RV \//\’ all bins falling under the kernel with the corresponding kernel
value.
@ () © 3) Optimization: The registration measure as a function of
Fig. 4. Several 1-D interpolation kernels: (a) linear; (b) cubic; and (c) singansformation defines an-dimensional function, with: the
(truncated). . . .
degrees of freedom of the transformation. The optimum of this
functionis assumed to correspond to the transformation that cor-
two images can be aligned for certain transformations, no inteectly registers the images. Unfortunately, the registration func-
polation is required for such transformations. Because interpotmn is generally not a smooth function, but one containing many
tion influences the value of the registration measure, the absetammal maxima. The local maxima can have two different causes.
of interpolation—at grid-aligning transformations—can cause$ome represent a local good match of the two images. Others
sudden change in the value of the measure, resulting in a e imperfections inherent to the implementation, for example,
tern of local extrema. The occurrence of such patterns has bésgal maxima can occur as a result of interpolation or because of
noted in several publications [11], [92], [131]. In [132], the difchanges in the overlapping part of the images. Local maxima in
ferent patterns created by linear and partial volume interpolatithre registration function can be reduced, among other things, by
are extensively studied. Holden [110] describes the existencearaproving implementation choices (e.qg., a higher order interpo-
artefacts for both mutual information and the ratio image unlation method), by filtering the images to reduce noise or by in-
formity [133] measures when using linear interpolation and prereasing the bin size of the intensity histogram. Because of the
poses low-pass filtering as a solution. Likar and P&i6] try existence of local maxima, the choice of optimization routine
to overcome the severe artefacts in the registration functionshefs a large influence on the results of the registration method,
subimages, either by a random resampling of the image grigirticularly on the robustness of the method with respect to the
or by including the probability distribution of the entire imagednitial transformation.
Chen and Varshney [134] employganeralized partial volume A second important property of the registration function that
interpolation method, which is identical to partial volume ininfluences the choice of optimization method is the capture
terpolation using a higher order kernel instead of a first-ordemnge of the optimum [1], [2], [35], [44]. For intensity-based
one. Interpolation artefacts deserve serious attention, not orggistration measures, it is possible that a large misregistration
because they can cause misregistrations, but also because difiéyyo images results in a higher value of the measure than the
prohibit subvoxel accuracy. correct transformation. The desired maximum may not be the
2) Probability Distribution Estimation:The most straight- global maximum of the search space and only part of the search
forward way to estimate the joint probability distribution ofspace leads to the desired maximum. This has two consequences
intensities in two images is to compute a joint histogram d&ér optimization of the registration function. First of all, an
intensities. Each entryi(a, b) in the histogram denotes theoptimization started outside the capture range of the desired
number of times intensity in one image coincides withinthe maximum has little chance of leading to a correct registration
other image. Dividing the entries by the total number of entried the images. Second, probabilistic optimization routines such
yields a probability distribution. The probability distributionsas some multistart methods and genetic algorithms, may prove
for each image separately are found by summing over the rows be less suitable for optimization of the mutual information
resp. columns, of the histogram. This method is chosen in theasure, because they can move outside the capture range. The
majority of papers [12], [22], [32]-[36], [38], [40], [44], [45], extent of the capture range depends on the registration measure
[47], [51], [52], [57], [58], [66], [72], [74], [77], [88], [91], and onimage properties (e.g., modality, contents, field of view)
[101], [106], [107], [112], [116], [120], [121], [125], [126], and cannot be determinedpriori.
[134]-[136]. Camp and Robb [59] propose a method that betterWWe will only mention some characteristics of the optimization
distributes the entries across all histogram bins. methods. Detailed descriptions can be found in general works
Another frequently used method of distribution estimatiofin optimization techniques such as [138] and [139] and in the
is Parzen windowing. Given a sétof n samples, the proba- papers cited or references therein.
bility p(x) of 2 occurring is the sum of the contributions of each A popular method is Powell’s routine, which optimizes each
samples from S to p(z). The contributions are functions of thetransformation parameter in turn. It does not require function
distance betweern andz. This results in the following defini- derivatives to be calculated, but is relatively sensitive to local

tion of the probability ofr given a sampleS optima in the registration function [11], [21], [34], [51], [52],
(571, [59], [65], [66], [70], [88], [96], [101], [108], [140], [141].
P(z,S) = EZW(x — %), Equally pop_ular i§ the Simplex method, whigh does not
n require derivatives either, but, contrary to the previous method,

sES
© considers all degrees of freedom simultaneously [22], [32],

The weighting functiorlV is a Gaussian function in most im-[33], [38]-[40], [64], [68], [85], [89], [101], [105], [111], [116],
plementations described in the literature [83], [96], [99], [100]118], [135], [141]. It is not known for its speed of convergence.
[108], [119], [127]. Other choices are double exponential func- Plattardet al.[47] use a combination of the Powell and Sim-
tions [137] and splines [97], [122]. plex methods, whereas Kagaéisal.[28] combine Powell and
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a genetic algorithm. Jenkinson and Smith [107] propose an opHolmes et al. [140] compare two optimization methods
timization routine that extends Powell's method with initializatogether with several other aspects such as subsampling and
tion and a multistart technique. thresholding to extract objects. The most extensive comparison

Rodriguez and Loew [53] combine Powell with topographef optimization methods for mutual-information-based image
ical global optimization. This involves a graph structure with theegistration, including multiresolution implementations, can be
nodes denoting points in the search space and the arcs poinfound in [141].
in the direction of nodes with lower function values. In this 4) Acceleration: Apart from improving the behavior of a
manner, the influence zones of local maxima can be determimadthod with respect to local maxima in the registration func-
and a number of local maxima is selected based upon the graiph, multiresolution schemes can also improve the speed of an
to start optimizations frord. algorithm. A rough estimate of registration is found in relatively

Although being one of the simplest optimization techniquesttle time using downsampled images, which is subsequently re-
hill-climbing optimization was shown to produce good results ifined using images of increasing resolution. Registration at finer
a multiresolution scheme, with the step size of the hill-climbingcales should be faster as a result of a reasonable initial estimate.
method decreasing as the image resolution increased [30], [48][70], simple equidistant subsampling, both with and without
[44]. Gaussian blurring of the images, is compared for registration

Methods that do require function derivatives (whethesf MR, CT, and PET images. Similarly, Zhu and Cochoff [101]
mathematically derived or numerically estimated) are gradiectmpare subsampling both with and without averaging of gray
ascent [36], [37], [45], [72]-[74], [99], [100], [121], [127], values. Maest al.[141] study the behavior of a large number of
[140]-[142], quasi-Newton methods [122], [141] and theptimization methods in combination with multiresolution ap-
method by Levenberg—Marquardt [97], [141]. Exact expregroaches. Rohlfing and Maurer [73] decrease the computational
sions for the gradient of mutual information are derived idemand by selectively refining the deformation grid, based on a
[141]. local entropy measure. Rohéeal.[121] base the selective re-

A method little used in image registration is simulatefinement on the gradient of the registration function, assuming
annealing, which has the seemingly paradoxical property thfat a large gradient is likely to denote a mismatched area. Simi-
sometimes taking a step in the “wrong” direction (i.e., towarlkdrly, Schnabeét al.[75] label selected control points as passive,
a smaller function value when the goal is maximizatiofased either on a segmentation of the image or local statistical
[91], [94], [106]. This move is allowed occasionally to makeneasures. Mattest al.[122] combine a hierarchical refinement
escapes from local maxima possible. Equally uncommarfthe deformation grid with a hierarchical degree of Gaussian
are genetic algorithms [50], [60], which are based on th®urring of the images before registration.
survival-of-the-fittest principle of combining current elements Several authors replace costly calculations by lookup tables.
and selecting the best of the new elements. Sarrut and Miguet [143] use lookup tables to avoid several com-

An unconventional approach of finding the optimal transfoputations for each voxel, such as the calculation of the weights
mation is employed in [41]. Template matching of subimagesad interpolation. Meiheet al. [144] speed up the Parzen win-
used to define a set of corresponding points (the center poidtsving process using lookup tables for the Gaussian functions.
of the subimages), based upon which a rigid transformationdsllei et al. [45] employ sparsehistogramming, i.e., using a
determined. small number of samples.

To improve the chances of finding the global optimum of the
registration function, Chen and Varshney [134] compute the mia- Image Dimensionality
tual information both of the entire images and of four subim- The majority of papers treats registration of 3-D images_ We

ages, assuming that when the global mutual information is maaiil next discuss the exceptions: two 2-D images or a 2-D and
imum, this should also hold for subimages. Zagrod=tal.[38] a 3-D image.

use the mutual information value of three intensity histograms1) 2-D/2-D: The difficulty with 2-D images is that the
of different bin widths simultaneously to find the optimal transnumber of samples usually is substantially smaller than with
formation. 3-D images. This can result in a less reliable estimation of
Optimization is often performed in a multiresolution mannethe probability distributions. Good results have been reported
as this is expected to decrease the sensitivity of the methochtthetheless. The choice for 2-D images is often guided by
local maxima in the registration function. The term multiresolithe application [34], [47], [65], [66], [87], [95], [103], [106],
tion can be used with respect to the images, in the sense thatftigs], [112], [119], [145]. Other times 2-D images are chosen
images are down- or upscaled to a number of resolution leveds initial testing of a novel idea, frequently with the intention
[21], [29]-[32], [35], [36], [44], [46], [48], [51], [71], [82], [97], of extension to three dimensions [52], [60], [111], [131].
[100], [101], [120], [127], [140], [141]. Multiresolution canalso  2) 2-D/3-D: Registration of 2-D and 3-D images is regularly
apply to the deformation grid of curved registration methodgpplied to find the correspondence between the operative scene
[29], [30], [36], [37], [46], [60], [64], [65], [72], [74]-[76], [82], and a preoperative image. Viola and Wells [13], [99], for ex-
[94], [121], [122], [125)]. ample, devised a method of using mutual information to register
2-D video images to a model of a 3-D object (usually based on
an MR or a CT image). Other papers in this area include [86],

3We have adapted the description of the method to apply to funotiaxi- [1.42]- Bapsabt al.[83] register 2'_D_ portal imaggs to a preoper-
mization ative CT in order to verify the position of the patient with respect
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Fig. 5. Different definitions of the mutual information (shaded areas) of three images (a)—(c). The dark gray color in (c) signifies that theusted isvize.
The circles denote the entropy of an image; joint entropy is the union of circles.

to the radiotherapy treatment plan. They propose an iterative &pve compared three methods of combining measures (adding
proach, which switches between segmenting the images badedmeasures of individual 2-D images and the 3-D image, alter-
on the current registration and registering the images basednating between separate optimizations or creating a single 2-D
the current segmentation. Other papers on registration of 2hidtogram of intensity correspondences in each of the 2-D im-
portal images and CT are [47], [96]. Zéllef al. [45] and Kim  ages and the 3-D image). This was applied to registration of 2-D
et al.[89] register CT and 2-D fluoroscopy images to verify pavideo images and a CT volume.
tient position. A similar problem, that of registering an MR volume to a set
Kim et al.[135] correct for motion in functional MRI (fMRI) of 2-D ultrasound images, is tackled by Blacketlal. [58] by
acquisitions by registering fMRI slices into a 3-D anatomicaathering the corresponding intensity pairs for each slice and
MR scan. In [117], out-of-plane deformation of the slices ithe volume into a single joint histogram. Pagoulatbal.[68],
introduced. Calibration of an ultrasound probe using 2-D/3-Bn the other hand, optimize the sum of the mutual information
registration is described by Blackai al.[58], registering 2-D of each ultrasound slice and the MR volume.

B-mode ultrasound images to an MR volume to allow recon- Another example of a multidimensional registration problem
struction of a 3-D ultrasound image. that requires only a single transformation is given by Andersson
A comparison of six intensity-based registration measuresd Thurfjell [146], who register two “series” of images (one
for registration of a 2-D fluoroscopy image to a CT volume, hageries consisting of two differently weighted MR images and

been made by Penney al. [31]. the other of a PET transmission and an emission scan), using a
higher dimensional joint intensity histogram. Boes and Meyer
F. Number of Images [111] also propose to use higher-dimensional mutual informa-

Commonly, two images are involved in the registratiof{on tO register two images, using a third image for additional
process. However, in certain situations several images of"$Prmation (which is assumed to be in register with one of the

scene are to be registered or a series of images taken at diffePSRET tWo images). Studholneal. [79] use higher dimensional
times needs to be compared. mu'FuaI |r_1format|on to m_clude a segmentation of an image in the
When more than two images are employed, two types of rd§gdistration to another image. o _ _
istration problems can be distinguished: with known and with AN interesting question is how to define higher dimensional
unknown inter-image geometry. In the first case, the transfdputual information. In textbooks and theoretical essays on
mations between several images are known and only a sinﬁf@eral'md (i-e., higher dimensional) mutual information [17],
transformation has to be determined. In the second case,lh®]: [148]. the definition of the measure for three images
knowledge about the transformation between individual imag€@TesPonds to Fig. 5(@). In this Venn diagram notation, the
is available and multiple transformations are to be found fraded area denotes the mutual information between images
transform the images to a common coordinate system. A, B and C. A property of this definition is that it is not
1) More Than Two Images, With Known Inter-Image Georﬁl_ecessarlly nonnegatlv_e [1_7]. In the medical image registration
etry: Anexample of the first type is the problem of determiningjtérature a different definition has been proposed [79], [111]
the posit?on of a 3-D objegt amidst a number of 2-D imaggs I(A,B,C) = Z p(a,b,¢) log p(a,b,c)
of the object, taking from different, known, angles. Several dif- — p(a)p(b)p(c)
ferent mutual-information-based solutions have been propog;ﬁgich can also be writlcén as
for this problem. One could simply sum the measures of each
2-D image and the 3-D image [45], [83], [86], [89] or combine (A, B,C) = H(A)+ H(B) + H(C) — H(A, B, C).
the intensity correspondences for each 2-D image and the 3FDis corresponds to the shaded area in Fig. 5(b) (the darker area
image in a single joint histogram [96]. Clarksen al. [142] is counted twice). This definition is nonnegative, contrary to the
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previous definition. However, it does not define the mutual irareas. Registration to correct for eddy current distortions in dif-
formation of three images as one would expect, namely as flasion-weighted images is described in [108], [118]. Hdiilal.
information that is shared between all three images. The dff51] employ a curved registration method for intraoperative
inition depicted in Fig. 5(c) is a slightly different applicationbrain shift measurement. A rigid registration method is used to
Studholmeet al.[79] and Lynchet al.[48] use the mutual infor- estimate brain motion with respect to the cranium as a result of
mation of theunionof two images (a bivalued image) togethepatient position [63]. Studholmet al. [37] estimate tissue de-
with a third image. formation of the brain after electrode implantation. latal.
2) More Than Two Images, With Unknown Inter-Image G¢152] compare their proposed measure for extracting the mid-
ometry: One instance of a registration problem from the secorsagittal plane to mutual information.
class (requiring more than one transformation) is described by CT: In the mutual information literature, CT is usually
Lynch et al. [48], who register three images. They circumvertombined with other modalities and few monomodality cases
the problem of having to optimize several transformations diave been reported. Extraction of the midsagittal plane is de-
multaneously by first registering two images. The third image &cribed by Liuet al. [152]. Martenset al. [153] use registra-
registered to the previous two using a 2-D intensity distributidion of pre- and postoperative CT images to validate pedicle
for the registered images, which results in a higher dimensiorsakew placement, whereas Bergmansl. [154] validate root
mutual information measure. canal treatment. An unusual application is described by &trél
Krickeret al.[113] register several 3-D ultrasound scans, a&l. [91] who use registration to find suitable locations for bone
quired under different angles, to form a compounded 3-D imageafting.
with a better signal-to-noise ratio (SNR). The first scan is used SPECT: Holmeset al.[140] compare mutual information
as the reference scan to register all subsequent scans to.  with a measure similar to Woods’ measure [5]. Radgai.[32]
Images of a patient that have been taken over a period of tic@mpare normalized mutual information with two other mea-
need registration to study changes through time. Usually, theres for the registration of single photon emission computed
first recorded image acts as a reference to which all subsequimiography (SPECT) images to an atlas, created by averaging
images are registered [24], [26], [108], [119], although somefanumber of SPECT images. The performance of several mea-
times another image is more suitable as a [72]. I€imal.[135] sures for registration of ictal and interictal images is reported in
correct for patient motion during the acquisition of fMRI timg85]. Registration of transmission images to achieve alignment
series by registering each slice into an anatomical volume. of the corresponding emission images is described by Van Laere
et al.[105].
G. Modalities PET: In Holmes' comparison of mutual information and

Mutual information has been applied to a wide variety dfVoods’ measure, PET-PET registration is one of the modality
image modalities. These can be subdivided into applications@fmbinations described [140].
monomodality images, of multimodality images, of an image US: Meyer et al. [39] use mutual information to match
and a model, and of an image to physical space (e.g., usingieast ultrasound images, whereas Zagrodziyl. [38], [40]
traoperative images of a patient). register two series of cardiac images. Shekhar and Zagrodsky

1) Monomodality: Even though, when first introduced, ond33] study the effect of median filtering, number of histogram
of the main advantages of mutual information was its capabiligns and interpolation method on the smoothness of the registra-
to register multimodality images, the measure has also b function of cardiac ultrasound images. Krickeal. [113]
shown to be well suited to registration of images of the sanflerm a 3-D ultrasound image with better SNR by registering
modality. The following is a brief overview of modalities foundseveral 3-D scans, which were acquired under different angles.
in the literature. Although MR images can have very different Microscopy: Registration of histological sections has
characteristics for different scanning protocols, we have clasggen reported both using rigid transformations [102], [103],
fied all MR registration problems as monomodality. [145] and curved ones [65], [66].

MR: Registration of MR images has been described in X-Ray: Sanjay-Gopalet al. [95] compare mutual in-
many publications [21], [51], [52], [149], often for curved transformation and the correlation coefficient for registration of
formations [26], [27], [29], [36], [37], [46], [62], [64], [72], [74], intrasubject mammograms. Plattatchl.[47] register both 2-D
[77], [80], [94], [111], [114], [117], [120], [121], [123], [124]. portal images and portal to x-ray images to verify the position
A study by Holmeset al. [140] includes matching of MR-T1 Of the patient with respect to previous radiotherapy treatment
and MRA images. Netsoét al.[93] register time series of per- Sessions.
fusion MR. Some first results of registering interventional MR~ Various: Ritter et al. [106] apply mutual information to
images can be found in [23], [67], [150]. Time series of fMRthe registration of retinal images, acquired by a fundus camera.
images require registration to detect changes in brain functi@fother paper on retinal images is the one by Butz and Thiran
[93]. Changes in brain anatomy are studied in [24], [42]. Fut50], who maximize the mutual information of the gradient im-
thermore, registration is needed to map the functional informades. Bakeet al.[119] register series of electrophoresis images
tion onto an anatomical MR scan [30], [71], [76], [125]. Keh (images of protein, separated based on their isoelectric charge)
al. [135] register individual fMRI acquisitions to an anatomicaln order to simplify segmentation. Sjogreenal. [34] register
image to correct for patient motion. Freire and Mangin [104mission and transmission scintillation images of an entire body.
register fMRI images to correct for patient motion and they 2) Multimodality: Mutual information has been studied for
study the sensitivity of several registration measures to activaf@@ny combinations of modalities.
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MR-CT: A popular combination, and one of the earliestegistration of a pretreatment CT to portal [47], [83], [96] or
described, is registration of MR and CT images [11], [41fluoroscopy images [45], [89].
[43], [44], [49], [50], [53], [57], [69], [92], [97], [100], [103], Registration to physical space is also required in
[126], [130], [140]. An interesting category are the papeiisage-guided treatment, for transferring the information
that report on registering what are commonly known as tlé a pretreatment image (and any treatment plans based upon
“RREP” or “Vanderbilt” images [41], [44], [57], [69]-[71], the image) to a patient on the operating table. Preoperative
[97], [103], [136], [141]. These images are publicly availablenages are registered to intraoperatively acquired images,
and an accurate gold standard is known [155] (although it haigch as video images from the operation microscope [86],
been suggested that registration by mutual information may[i¥?2], ultrasound images [68], fluoroscopy images [31], PET
some cases yield more accurate results than the gold standeadsmission images [25] or interventional MR images [23],
[92]). This is one of the few sets of images that allows dire¢67], [150].
comparison of the accuracy of different methods. Afinal application is tracking of a person’s movements. Viola

MR-PET: A variety of applications of MR-PET registra-and Wells [13], [99] achieve this through registration of a 3-D
tion has been recounted [11], [29], [41], [43], [44], [57], [69]model to video images.
[79], [92], [97], [100], [116], [140], [146]. The RREP images
mentioned above also include MR and PET image pairs. H. Subject

MR-SPECT: Comparisons between mutual information The subject in the images to be registered can be the same (in-
and other measures for registration of MR and SPECT imag[?gsub. . ; . : . . .

ject registration), can differ (intersubject registration) or

are made in [84], [94], [140]. Other publications on the subject : . ; .
of MR-SPECT matching are [48], [98], [101], [103]. one of the images can be a model. Intersubject registration based

) . . . on mutual information is a highly relevant topic, because it can
M.R'US' .Reg|strat|o.n of uIFraspund 'mages o otheg rm the basis for methods such as tissue segmentation (e.g.,
modalities using mutual information is a relatively unexplore 42], [158]), bias field correction in MR images (e.g., [159)])
field. Rocheet al. [156] study the possibilities of using mutual' < , bla * Images {€.9.,

. : ; . : and analysis of images of groups of subjects (e.g., [160], [161]).
qurmatlon o register ultrasound to anato.mlcal MR 'mage nly a small percentage of the references deal with intersub-
while Slomkaet al. [22] match ultrasound with MRA IMages. ;o ot registration, which is partly because intersubject registra-

Bsckl ot s, 56 use rsgation of uvssound and M Lt e ety gained

images can be acauired relativel epasil .durin a rocedulfrlgntion and partly because we have not included all papers that
9 4 vey y 9 & procedufiy, registration as one of several steps in an application, but that

Pagoulatoset al. [68] report initial results of registering focus on the application

anatomical MR.and uItrasounq images with .the 'T‘te”t of using Some of the intersubject registration methods include a model

the method for image-to-physical-space registration. and those have been treated in Section 1V.G.3. Hetlieal.

CT-PET: Both Erdiet al.[25] and Mattest al.[122] reg- . . : . .
ister CT and PETransmissiorimages of the thorax to achieve[lﬁz] compare five measures for intersubject registration of MR
9 brain images. Studholmet al. [36], [160] use a single image

fusion of CT and PE Emissionimages. CT-PET registration of as a reference for intersubject registration in cohort studies of

the thorax is furthermore described by Meg¢rl. [116]. . . ; . i
CT-SPECT: Meyer et al. [116] also registered CT and patlents.. Rohdet al.[121] reglste.r MR images of different pa
thnts using a curved transformation. Rangarejzal.[145] reg-

SPECT images, now focusing on the abdomen, as did Kolrs er sets of sulcal points sets of different individuals. Finally,

et al. [30]. Kagadiset al. [28] compare a surface-based and Rueckertet al. [123] register images of different patients in

mutual-information-based registration routine. L :
.o . . .. order to create a statistical deformable model of brain anatomy.
CT-Various: CT has been registered using mutual infor-

mation to several other modalities, such as 2-D video images_ |

[86], [142], 2-D fluoroscopy images [31], [45], [89] and portal- OPiect

images [47], [83], [96]. The object in medical image registration is the part of the

Microscopy: Flynn et al. [87] match stained histological anatomy involved. We have found a varied list of objects, which

sections with the corresponding radioluminographs (RLG) &f summarized in this section.

the sections. Kinet al. [112] warp a histological section to a Brain: A large part of the literature of mutual-informa-

video image taken before slicing. tion-based registration concerns head or brain images [11], [12],
3) Modality to Model: By a model we denote any kind of[14], [24], [26]-[30], [32], [35]-[37], [41]-[44], [47], [49]-[53],

simplified or processed image. A model can be a simulat§s/], [64], [67], [69]-[71], [76], [80], [84], [86], [88], [92]-[94],

image [42], [61], [107], [115] or a segmentation [120], [157][97]-[101], [104], [107] [108], [111], [115]-[117] [123], [125],

Another possibility is an average image or a statistical moddl26], [135], [136], [140]-[142], [150], [160], [162].

composed of several images [29], [32], [105]. Thorax/Lungs: Moving downwards we come to the thorax
4) Modality to Physical SpaceA previously acquired and the lungs, which have been the central theme in a small

image of a person can be registered to the actual person, sedection of papers [25], [89], [116].

an intraoperative image. This is what we term “registration to  Spine: Penneyet al. [31] use images of a realistic spine

physical space.” A common application in radiotherapy is thghantom and add structures (soft tissue, stents) from clinical im-

verification of patient position with respect to a treatment plamges to assess the performance of several intensity-based regis-

based on a previously acquired image. Usually, this involvéstion measures. Martees al. [153] apply registration to pre-
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and postoperative CT images to validate pedicle screw placa accuracy (versus markers). Niketial. [94] adapt two ex-
ment. isting measures by including robust estimators and compare alll
Heart: Zagrodskyet al. [38], [40] register two series of four measures to mutual information. Monomodality registra-
cardiac ultrasound images, with each series of images a &en of MR images and multimodality registration of MR and
quence of heart cycles. In [33], several adaptations to the met§gdECT images is studied with regard to accuracy (versus a
are made to allow affine registration. manual solution), robustness with respect to starting estimate
Breast: Registration of breast images has been describ@fd the presence of nonbrain structures. Barreteal. [84]
for various imaging modalities, in particular, MR [46], [62],compare the accuracy of five methods to register SPECT and
[74], [77], [114], [149], X-ray [95] and ultrasound [39], [113]. MR images against that of skin fiducials. Mutual information is
AbdomenlLiver: Several papers have been published dHtperformed by two methods designed specifically for regis-

registration of abdominal images [52], [90], [116] and of thiyation of functional and anatomical images. Holdgral.[27]
liver [23], [72]. compare eight measures for registration of 3-D MR time series

Pelvis: As registration of pelvic images is quite a Chal_of the brain. The property under scrutiny is consistency, which
; i : ismeasured by registering images in trianglédd B, B to C
lenging task, almost all references given propose some adgﬁd(] back toA) and calculating the deviation of the composite

: a
Eﬁgﬁ?ﬂié:ﬂ:&gﬁr_g@: dor:];n;ﬁ:%?ztzle [37»[;]” d[g;? method of mq f the three transformations to the identity transformation. Car-
Tissue: Histological sections of ,tissué are. the object rillo et al.[23] apply one manual and four automated methods
. S . 0 matching of differently weighted MR images (including con-
registration in a number of studies [65], [66], [87], [102], [112]y ot enhanced images). The accuracy (versus anatomical land-
[145]. . . ) . . marks) and the robustness (with respect to, e.g., field of view
Various: Retinal images are registered by Riter al. 514 starting estimate) were investigated. Van Lagr. [105]
[106] and by Butz and Thiran [50]. Lynatt al. [48] align two  gescribe the performance of three measures for registration of
MR images and a SPECT image of the knee. MRA and pOWSPECT transmission images. In [81], [136], mutual informa-
Doppler ultrasound images of carotid bifurcations are registerggh is compared to other dependence measures from informa-
by Slomkaet al. [22] and the resulting transformation is usegion theory, in particularf-information measures. Mutual in-
to register B-mode ultrasound and MRA. Sjogrestral. [34]  formation is a member of this class of measures, which are all
register whole-body scintillation images. Dental CT images agtential registration measures. Freire and Mangin [104] study

registered by Bergmaret al. [154]. the performance of six measures on registration of fMRI images,
_ _ focusing on their sensitivity to activated areas. Nonrobust mea-
J. Comparison Studies sures can give rise to erroneous activations in the analysis of the

By the term “comparison study” we mean all papers writteifnages. Otte [30] compares two measures for curved registra-
with the sole intention of comparing several different registrion of fMRI to anatomical MR data. Radat al.[32] investi-
tion measures and not papers that primarily intend to presé&ate the sensitivity of three registration measures to (simulated)
a new method (which often includes a comparison to oth@gfects in SPECT images. Four measures for registration of
methods). Admittedly, the dividing line is thin. Naturally, allMR and SPECT images are validated by Greval.[88]. The
studies include mutual information. SPECT images are simulations, derived from the MR images.

Studholmeet al. apply three measures to rigid registratiom'le”ieret al.[162] evaluate intersubject registration of MR brain
of MR and CT brain images [49] and five to MR and PETMages for five similarity measures. The transformation consid-
images [35]. A number of measures based on a joint inte@red is curved except for the mutual information method, which
sity histogram is compared by Bro—Nielsen [163], for regi@mploys a rigid transformation. Four intensity-based measures
tration of MR and CT images. By far the most extensive arfe evaluated by Sarrut and Clippe for registration of 2-D portal
the most important comparison study was performed by Wesid a 3-D CT image [96]. Two methods for CT-SPECT regis-
et al. [155]. It originally comprised 16 methods, but has beefiation, one based on surfaces and one on mutual information,
extended substantially since. It has the advantage that the regl€compared by Kagadét al. [28]. Zhu [165] shows that mu-
trations were done by the research groups themselves. Thetyga!l information is a special case of cross entropy. Several other
curacy of the methods for rigid registration of clinical CT-MRcases are deduced (such as conditional entropy) which are suit-
and PET-MR images pairs was established relative to a mett@ie registration measures. Combinations of the measures are
based on bone-implanted markers. In [164], the performancec@mpared for rigid registration.
a number of the methods in the study is compared, after subdiTo conclude, we present a list of papers that we did not con-
vision into surface-based and intensity-based methods. Pengiglgr true comparison studies, but that do contain comparisons
et al. [31] study 2-D/3-D registration of fluoroscopy and CTbetween mutual information and other measures [12], [29], [44],
images using six measures. A phantom is used, but the rob46], [51]-[53], [64], [69], [89], [91], [93], [95], [102], [103],
ness of the measures with respect to differences in image cbB7], [127], [128], [130], [152], [156].
tent is studied by extending the phantom images with soft tissue
str.uctures and interventional instruments from clinical images. V. DISCUSSION
Brinkmannet al. [85] study three measures for registration of
ictal and interictal SPECT, using phantom, simulated and clin- Over the past seven years, a lot of understanding has been
ical images. One manual and four automated methods are cgained about mutual information as an image registration
pared by Flynret al. [87]. They apply the methods to registraimeasure. It is not an easy measure to understand: the under-
tion of radioluminographs and histological sections, focusifging process of how misregistration influences the probability
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distribution is difficult to envisage. How it influences theof deformation. For many applications more than just a regu-
relation between joint and marginal distributions is even motarization term will be required to achieve physically realistic
mystifying. In contrast, minimizing the distance betwee(let alone correct) deformations. Another interesting topic is the
corresponding points, for example, is a much easier conceggistration of three images (or more). This is a problem in sub-
to grasp. However, extensive experimenting, applying, amction SPECT, for example, where two SPECT images may
comparing of the measure has given a good deal of insight inteed to be registered with an anatomical scan. All the papers
the strengths and weaknesses of mutual information. on registration of three images either assume two of the images
From the diversity of modalities and objects found in the liteiare already in register or this is achieved by first registering two
ature, itis clear that mutual information lives up to its reputatioimages and then the third. How to optimize two different trans-
of being a generally applicable measure. For numerous clinidaimations simultaneously and whether there is a single global
applications it can be used without need for preprocessing, usptimum to this problem is another question. Challenging also
initialization or parameter tuning. On the other hand, from the the field of intraoperative registration, including patient po-
conclusions of certain comparison studies [31], [84], [85] argition verification in radiotherapy and correction for tissue de-
from the interest in adaptations of the measure [50]-[52], [69fhrmation, which usually requires fast matching to an image of
[79], [80] it can be inferred that mutual information may notelatively poor quality and also entails deformations. Relatively
be a universal cure for all registration problems. For instanditle research has as yet gone into intersubject registration, as
better results with other measures have been reported for regll as certain combinations of modalities. Ultrasound, to name
istration of serial images which show relatively large change@se of the most challenging, poses a serious problem for regis-
[31], [85], for extraction of the midsagittal plane of the brairration, because of the difference in imaging physics. Itis based
in MR images [152] and for curved registration of MR brairon tissuetransitions which results in a strong dominance of
images [130]. Furthermore, it may turn out that mutual inforedges in the resulting images. A final example of an area de-
mation is not the optimal measure for images of thin structuresanding further research is the question how to “correct” the
(e.g., retinal images) or for the combination of MR and ultraeassumption of Shannon entropy that the gray values of neigh-
sound images [156]. boring voxels are uncorrelated. In other words, how to include
What we have learnt from past research is that normalizatitire images’ spatial information.
of mutual information with respect to image overlap is a useful From the continuing interest in the measure it can be deduced
adaptation of the measure. It has been shown by quite a nunithé@t mutual information will not be abandoned in the near future.
of different methods that curved registration based on mutdsis already a successful registration measure for many applica-
information is viable, although the best way to set about it is yéens and it can undoubtedly be adapted and extended to aid in
unclear. We have seen that the choice of interpolation meth@@ny more problems.
influences both accuracy and smoothness of the measure. Sev-
eral options for estimation of the probability distributions have APPENDIX
been proposed, while large numbers of optimization routines HARTLEY ENTROPY

have been investigated. The question remains, however, howya ey wanted a measure that increases linearly with length.

best to implement a mutual-information-based method. Thaﬁrthermore, he assumed that given messages of lengthd
certain options are more promising than others has been shoyyanrom s; ands, numbers of symbols, respectively,sf' =

but the.optimal choice als_o depends on the interaction betwega, i.e., the number of possible messages is equal, then the
the various aspects of the implementation. For example, a high&t,unt of information per message is also eqEajo

order interpolation method will most likely yield a smoother

registration function, which reduces the need for a highly com- H = Kn
plex, yet robust, optimization technique. The best implementa- syt = s5°.

tion will always be a balance between time constraints and thgs deduction of the definition of entropy is as follows:
demands of the application. Naturally, comparing the different

implementations proposed is a problem because of the different, | s o (s " "
applications, the different test sets and sometimes also becatise 8 1= K, _lognsf {*log sz =logsy” /log 5.}
of a lack of detail described. A huge step forward has been thg, logsi* _ K, log 55”
introduction of the RREP data sets, with which a large number =~ 10g s1 log s2
of registration methods has already been compared. Howevdf,1/ log s1 = K2/ log s».
only theaccuracyof the participating methods can be studied, aphe final equality holds only wheR,, = clog s, with ¢ an ar-
itis unlikely that anyone will submit results that are evidently inbitrary constant that should be equal forAll.. It can therefore
correct by visual inspection. An interesting observation from thg: omitted and< = log s results.

RREP study is that the methods by Ma&sl.[57], Studholme

King = Kong  {n, = *logsi*}

ny _ N2 ny __ no
{si1 = 532 — log s} = log 83}

et al.[44], Thévenaz and Unser [97] and Viola and Wells [100], REFERENCES
although very differently implemented, all yield comparable re- (1} ; v wajnal, 0. L. G. Hill, and D. J. Hawkes, Edaedical Image Reg-
sults with respect to accuracy. istration. Boca Raton, FL: CRC, 2001.
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registration. As far as we know, only two o urv g [3] R.V.L.Hartley, “Transmission of informationBell Syst. Tech. Jvol.

istration methods reported explicitly include a physical model 7, pp. 535-563, 1928.
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