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Abstract—An overview is presented of the medical image pro-
cessing literature on mutual-information-based registration. The
aim of the survey is threefold: an introduction for those new to the
field, an overview for those working in the field, and a reference for
those searching for literature on a specific application. Methods
are classified according to the different aspects of mutual-infor-
mation-based registration. The main division is in aspects of the
methodology and of the application. The part on methodology de-
scribes choices made on facets such as preprocessing of images,
gray value interpolation, optimization, adaptations to the mutual
information measure, and different types of geometrical transfor-
mations. The part on applications is a reference of the literature
available on different modalities, on interpatient registration and
on different anatomical objects. Comparison studies including mu-
tual information are also considered. The paper starts with a de-
scription of entropy and mutual information and it closes with a
discussion on past achievements and some future challenges.

Index Terms—Image registration, literature survey, matching,
mutual information.

I. INTRODUCTION

T HERE are two things Collignon and colleagues and
Viola and Wells probably did not foresee when they were

working on a new idea in approximately 1994. First of all, that
someone else had the same idea and, second, that this new idea
would lead to a list of publications as long as the one in this
paper, in only seven years. This survey covers the literature
until spring 2002. Actually, the “true” list is longer—in the
first place, because we have left out redundant publications
and because we are bound to have missed some publications.
Second, mutual-information-based registration has become
common place in many clinical applications. There is a wealth
of papers mentioning the use of the method as a step in a larger
method or in an application. These papers were generally not
included, except when the modality involved or the application
was unusual.

In the following, we aim to introduce and explain mutual in-
formation and to give an overview of the literature on mutual-in-
formation-based registration for medical applications. We start
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at the basics, with the definition of entropy and its interpretation.
We then turn to mutual information, presenting its history in
image registration, its multiple forms of definition and its prop-
erties. For a recent general introduction to and review of medical
image registration, including many references to mutual-infor-
mation-based methods, we refer to [1] and [2].

The survey classifies methods into two main categories:
methodological aspects and matters of application. The aspects
of the method are subdivided into preprocessing, measure,
transformation, and implementation, most of which have a
further subclassification. Aspects of the application entail the
image modalities, the subject of registration (a single person
or different persons) and the object of registration (the imaged
anatomy). We also classify according to the image dimension-
ality and the number of images involved in registration.

Finally, having considered a number of comparison studies,
we discuss the results of seven years of research and also some
challenges that still lie ahead.

II. ENTROPY

The desire for ameasure of information(commonly termed
entropy) of a message stems from communication theory. This
field concerns the broadcast of a message from a sender to a
receiver. The first attempts to arrive at an information measure
of a message focused on telegraph and radio communication,
sending Morse code or words. However, picture transmission
(television) was already considered in the important paper by
Hartley [3]. In 1928, he defined a measure of information of
a message that forms the basis of many present-day measures.
He considered a message a string of symbols, withdifferent
possibilities for each symbol. If the message consists ofsym-
bols, there are different messages possible (assuming there
are no syntactic rules). He sought to define an information mea-
sure that increases with message length. The measurecom-
plies, but the amount of information would increase exponen-
tially with the length of the message and that is not realistic.
Hartley wanted a measure that increases linearly with, i.e.,

, where is a constant depending on the number of
symbols . He further assumed that, given messages of length

and from and numbers of symbols, respectively, if
, i.e., the number of possible messages is equal, then

the amount of information per message is also equal. These two
restrictions led him to define the following measure of informa-
tion:

(1)

as is shown in the Appendix. Hartley’s information measure
depends on the number of possible outcomes: the larger the
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number of possible messages, the larger the amount of infor-
mation you get from a certain message. If there is only a single
message possible, you gain no information from
it, because you already knew you would receive that message.
In this respect, the measure can also be viewed as a measure of
uncertainty. When there are more different messages you could
possibly receive, you are more uncertain which one you will
actually receive. And, again, if there is only one, there is no un-
certainty.

A drawback of Hartley’s measure is that it assumes all sym-
bols (and, hence, all messages of a given length) are equally
likely to occur. Clearly, this will often not be the case. In the
previous paragraph, for example, the letter “e” has occurred
229 times and the letter “q” only twice. Shannon introduced an
adapted measure in 1948 [4], which weights the information per
outcome by the probability of that outcome occurring. Given
events occurring with probabilities , the
Shannon entropyis defined as

(2)

If we apply to Shannon’s entropy the assumption that all out-
comes are equally likely to occur, we get

(3)

which is exactly Hartley’s entropy.
Although the second definition of the Shannon entropy in (2)

is more commonly used, the first one more clearly explains the
meaning. The term signifies that the amount of in-
formation gained from an event with probability is inversely
related to the probability that the event takes place. The more
rare an event, the more meaning is assigned to occurrence of
the event. The information per event is weighted by the proba-
bility of occurrence. The resulting entropy term is theaverage
amount of information to be gained from a certain set of events.

In line with Hartley’s entropy, we can also view Shannon’s
entropy as a measure of uncertainty. The difference is that
Shannon’s measure depends not only on the number of possible
messages, but also on the chances of each of the messages
occurring. When all messages are equally likely to occur, the
entropy is maximal, because you are completely uncertain
which message you will receive. When one of the messages has
a much higher chance of being sent than the other messages,
the uncertainty decreases. You expect to receive that one
message and in most cases you will be right. The amount
of information for the individual messages that have a small
chance of occurring is high, but,on average, the information
(entropy/uncertainty) is lower. As a hypothetical example, let
us assume a 1-yr old child uses the words “mummy,” “daddy,”
“cat,” and “uh-oh.” If the child uses all words almost as fre-
quently, with a slight preference for “mummy,” the respective
percentages of times the words are used could be 0.35, 0.2,
0.2, and 0.25. The entropy of the child’s language is then

. Some time later, the vocabulary may have expanded and
changed to (“mummy” 0.05), (“daddy” 0.05), (“cat” 0.02),
(“train” 0.02), (“car” 0.02), (“cookie” 0.02), (“telly” 0.02), and
(“no” 0.8). Now one word is dominant and the entropy of the

(a) (b) (c)

Fig. 1. Example of a feature space for (a) a CT image and (b) an MR image.
(c) Along the axes of the feature space, the gray values of the two images are
plotted: from left to right for CT and from top to bottom for MR. The feature
space is constructed by counting the number of times a combination of gray
values occurs. For each pair of corresponding points(x;y), with x a point in
the CT image andy a point in the MR image, the entry(I (x); I (y))
in the feature space on the right is increased. A distinguishable cluster in the
feature space is the stretched vertical cluster, which is the rather homogeneous
area of brain in the CT image corresponding to a range of gray values for the
MR image.

language has dropped to 1.25. There is less uncertainty about
which word the child will utter. Whatever you ask, the answer
is almost certainly “no.”

The Shannon entropy can also be computed for an image, in
which case we do not focus on the probabilities of letters or
words occurring, but on the distribution of the gray values of
the image. A probability distribution of gray values can be esti-
mated by counting the number of times each gray value occurs
in the image and dividing those numbers by the total number of
occurrences. An image consisting of almost a single intensity
will have a low entropy value; it contains very little information.
A high entropy value will be yielded by an image with more or
less equal quantities of many different intensities, which is an
image containing a lot of information.

In this manner, the Shannon entropy is also a measure of dis-
persion of a probability distribution. A distribution with a single
sharp peak corresponds to a low entropy value, whereas a dis-
persed distribution yields a high entropy value.

Summarizing, entropy has three interpretations: the amount
of information an event (message, gray value of a point) gives
when it takes place, the uncertainty about the outcome of an
event and the dispersion of the probabilities with which the
events take place.

III. M UTUAL INFORMATION

A. History

The research that eventually led to the introduction of mu-
tual information as a registration measure dates back to the early
1990s. Woodset al. [5], [6] first introduced a registration mea-
sure for multimodality images based on the assumption that re-
gions of similar tissue (and, hence, similar gray values) in one
image would correspond to regions in the other image that also
consist of similar gray values (though probably different values
to those of the first image). Ideally, the ratio of the gray values
for all corresponding points in a certain region in either image
varies little. Consequently, the average variance of this ratio for
all regions is minimized to achieve registration.

Hill et al.[7] proposed an adaption of Woods’ measure. They
constructed afeature space, which is a two-dimensional (2-D)
plot showing the combinations of gray values in each of the two
images for all corresponding points. Fig. 1 shows an example
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(a) (b) (c) (d)

Fig. 2. Joint gray value histograms of an MR image with itself. (a) Histogram shows the situation when the images are registered. Because the images areidentical,
all gray value correspondences lie on the diagonal. (b), (c), and (d) show the resulting histograms when one MR image is rotated with respect to the other by angles
of 2�, 5�, and 10�, respectively. The corresponding joint entropy values are (a) 3.82; (b) 6.79; (c) 6.98; and (d) 7.15..

of such a feature space for a magnetic resonance (MR) and a
computed tomography (CT) image. The difference with Woods’
method is that instead of defining regions of similar tissue in the
images, regions are defined in the feature space. These regions
are based on the clustering one finds in the feature space for
registered images.

The feature space (or joint histogram) changes as the align-
ment of the images changes. When the images are correctly
registered, corresponding anatomical structures overlap and the
joint histogram will show certain clusters for the gray values of
those structures. For example, the cluster in the top left corner of
the histogram in Fig. 1 is the combination of background in both
images. As the images become misaligned, structures will also
start overlapping structures that are not their anatomical coun-
terparts in the other image. Consequently, the intensity of the
clusters for corresponding anatomical structures will decrease
and new combinations of gray values emerge such as skull and
brain or skin and background. This will manifest itself in the
joint histogram by a dispersion of the clustering. Fig. 2 contains
several histograms of an MR image with itself for different ro-
tations of one image with respect to the other. Clearly, the his-
togram shows increasing dispersion as the misregistration in-
creases.

Using this characteristic of the joint histogram of two im-
ages, measures of dispersion emerged, to use for image regis-
tration. Hill et al. [8] proposed the third-order moment of the
joint histogram, which measures the skewness of a distribution.
Both Collignonet al.[9] and Studholmeet al. [10] suggested to
use entropy as a measure of registration. As we have explained
in Section II, entropy measures the dispersion of a probability
distribution. It is low when a distribution has a few sharply de-
fined, dominant peaks and it is maximal when all outcomes have
an equal chance of occurring. A joint histogram of two images
can be used to estimate a joint probability distribution of their
gray values by dividing each entry in the histogram by the total
number of entries. The Shannon entropy for a joint distribution
is defined as

(4)

By finding the transformation that minimizes their joint entropy,
images should be registered.

Once entropy, a measure from information theory, had been
introduced for the registration of multimodality medical images,
another such measure quickly appeared: mutual information.
It was pioneered both by Collignonet al. [11], [12], and by
Viola and Wells [13]–[15]. Applied to rigid registration of multi-
modality images, mutual information showed great promise and

within a few years it became the most investigated measure for
medical image registration.

B. Definition

Most books on information theory ([16]–[18], for example)
discuss the notion of mutual information. The definition of the
term, however, can be presented in various ways. We will next
treat three frequently used forms of the definition, because more
than one is used in the literature. All three forms are identical;
each can be rewritten into the other two1 . Each form of defini-
tion, however, explains the relation to registration in a different
way. We will describe mutual information for two images, as
used in image registration, and not in a general sense.

The first form of definition we discuss is the one that best
explains the term “mutual information.” For two imagesand

, mutual information can be defined as

(5)

where is the Shannon entropy of image, computed on
the probability distribution of the gray values. denotes
the conditional entropy, which is based on the conditional prob-
abilities , the chance of gray valuein image given
that the corresponding voxel in has gray value . When in-
terpreting entropy as a measure of uncertainty, (5) translates to
“the amount of uncertainty about imageminus the uncertainty
about when is known.” In other words, mutual information
is the amount by which the uncertainty aboutdecreases when

is given: the amount of information contains about . Be-
cause and can be interchanged, is also the amount
of information contains about . Hence, it ismutualinforma-
tion. Registration is assumed to correspond to maximizing mu-
tual information: the images have to be aligned in such a manner
that the amount of information they contain about each other is
maximal.

The second form of definition is most closely related to joint
entropy. It is

(6)

This form contains the term , which means that max-
imizing mutual information is related to minimizing joint en-
tropy. We have described above how the joint histogram of two
images’ gray values disperses with misregistration and that joint
entropy is a measure of dispersion. The advantage of mutual in-
formation over joint entropyper se, is that it includes the en-
tropies of the separate images. Mutual information and joint en-
tropy are computed for the overlapping parts of the images and
the measures are therefore sensitive to the size and the contents

1We conjecture that the identity of the three definitions only holds for the
Shannon entropy and we invite anyone to prove of refute this hypothesis.
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TABLE I
CLASSIFICATION SCHEME FORMUTUAL-INFORMATION-BASED REGISTRATION METHODS

of overlap. A problem that can occur when using joint entropy
on its own, is that low values (normally associated with a high
degree of alignment) can be found for complete misregistra-
tions. For example, when transforming one image to such an ex-
tent that only an area of background overlaps for the two images,
the joint histogram will be very sharp. There is only one peak,
that of background. Mutual information is better equipped to
avoid such problems, because it includes the marginal entropies

and . These will have low values when the over-
lapping part of the images contains only background and high
values when it contains anatomical structure. The marginal en-
tropies will thus balance the measure somewhat by penalizing
for transformations that decrease the amount of information in
the separate images. Consequently, mutual information is less
sensitive to overlap than joint entropy, although not completely
immune.

The final form of definition we discuss is related
to the Kullback–Leibler distance, which is defined as

, for two distributions and . It is a
measure of the distance between two distributions. Analogous
to the Kullback–Leibler measure, the mutual information of
images and is defined as

(7)

The interpretation of this form is that it measures the distance
between the joint distribution of the images’ gray values
and the joint distribution in case of independence of the images,

. It is a measure ofdependencebetween two images.
The assumption is that there is maximal dependence between
the gray values of the images when they are correctly aligned.
Misregistration will result in a decrease in the measure.

C. Properties

Mutual information has the following properties [16].

1) .
It is symmetric; otherwise it would not bemutual in-

formation. However, although it is a logical property in
theory, mutual information is not symmetric in practice.
Implementational aspects of a registration method, such
as interpolation and number of samples, can result in dif-
ferences in outcome when registeringto or to .

2) .
The information image contains about itself is equal

to the information (entropy) of image.
3) .

The information the images contain about each other
can never be greater than the information in the images
themselves.

4) .
The uncertainty about cannot be increased by

learning about .
5) if and only if and are independent.

When and are not in any way related, no knowl-
edge is gained about one image when the other is given.

IV. SURVEY OF LITERATURE

For our survey of the different aspects of mutual-informa-
tion-based registration, we have defined a classification scheme,
which builds on earlier schemes for medical image registration
in general [19], [20]. The mutual information scheme is pre-
sented in Table I.

The main subdivision of the classification is in aspects
concerning themethodand those concerning theapplication.
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In addition, the classesimage dimensionalityand number of
imagesare defined. The elements of these two subclasses can
concern purely the application, but they can also necessitate
an adaptation of the method. They are therefore treated sep-
arately. The class “Method” can be further subdivided into
preprocessing, measure, transformation, and implementation.
Preprocessing entails any image processing to prepare or
improve the images for registration. Typical examples are
filtering to remove noise, extraction of regions of interest and
isotropic resampling. The measure will obviously be (based on)
mutual information, but differences are possible, characterized
by the choice of entropy, by normalization and by adaptations
to incorporate spatial information. The transformation can be
classified as either rigid (rotations and translations only), affine
(rigid plus scaling and shearing), perspective (affine without
preservation of parallelism of lines) or curved. Implementation
is an important category, because the choice of method for
interpolation, probability distribution function (pdf) estimation,
optimization and acceleration can have a substantial influence
on the registration results.

The first aspect of the class “Application” is the type of
modalities it concerns. The images can be of the same kind
(monomodality), acquired by different techniques (multi-
modality), a type of model can be involved (a phantom or atlas,
for example) or images are registered to physical space. By the
latter we mean registration of previously acquired images to
a person, as is used for image-guided surgery or radiotherapy
treatment.Subjectdenotes whether images of a single person
are involved, which is calledintrasubject registration, or images
of different persons,intersubject registration, or whether im-
ages of a person are matched to a model. Finally, the anatomy
that the registration focuses on is what we termobject.

Of image dimensionalitywe have found instances of 2-D/2-D,
3-D/3-D, and 2-D/3-D registration in the literature. Thenumber
of imagesinvolved in the registration is usually 2, but registra-
tion of more than two images has been described in a number of
publications. The latter aspect can be further divided into regis-
tration problems where the transformations between several im-
ages are known and only a single transformation is to be found
or problems that require several transformations.

In the following, we will discuss most categories of our
scheme. Some aspects are so dominant in the literature (for
example, 3-D/3-D registration), that we will only review the
exceptions. We have also taken the liberty to focus on the
aspects thatwe find most interesting. After the classification
scheme, we will consider a number of comparison studies.

A. Preprocessing

Several techniques of processing images before registration
have been described. The most common preprocessing step is
defining a region [21], [22] or structures [23]–[38] of interest in
the images to exclude structures that may negatively influence
the registration results. Other processing techniques reported in-
clude low-pass filtering to remove speckle in ultrasound images
[33], [38]–[40] and thresholding or filtering to remove noise
[41], [42]. Blurring is also applied to correct for differences
in the intrinsic resolution of the images [34], [43]–[45]. Inten-

sity inhomogeneities in images are corrected in several methods,
both for MR images [29], [46] and for portal images [47]. Some
methods resample the images isotropically, to achieve similar
voxel sizes in all image dimensions [21], [35], [43], [44], [48],
[49], others resample to obtain similar voxel sizes in the images
to be registered [22].

B. Measure

Obviously, in a literature survey on mutual-informa-
tion-based image registration, the measure in question will
always be mutual information. However, when using a def-
inition of mutual-information-based on entropy, different
definitions of entropy can be chosen. Furthermore, several
adaptations of mutual information have been proposed: nor-
malization with respect to the overlapping part of the images
and inclusion of spatial information.

A few recently proposed methods do not adapt the mutual
information measure, but cannot be considered standard imple-
mentations either. Butz and Thiran [50] compute feature images
(gradients) of which the mutual information is calculated. Nyúl
et al. [51] evaluate the mutual information of “scale images”:
the value of a voxel is the radius of the largest sphere which is
centred at the voxel and which falls completely within a single
object.

1) Entropy: By far the most common measure of entropy in
the papers in this survey is the Shannon entropy [4]. Rodriguez
and Loew [52], [53] use the Jumarie entropy [54]. The Jumarie
entropy is defined for one-dimensional (1-D) signals and resem-
bles a normalized version of Shannon entropy, applied not to
a probability distribution, but to function value differences of
neighboring samples. In [52], 2-D images are registered. The
authors define the Jumarie entropy of a 2-D image on the gra-
dient magnitude of pixels. The joint Jumarie entropy is defined
on the gray value difference of corresponding pixels, which pre-
sumably makes the measure less suitable to registration of mul-
timodality images. Ioannideset al.[55] use the Rényi entropy of
order 4, although not for image registration, but for comparison
of brain activity during different tasks. The Rényi entropy of
order 2 is employed by Pompeet al.[56] to measure the strength
of dependence between 1-D respiratory and cardiac signals.

2) Normalization: The size of the overlapping part of the
images influences the mutual information measure in two ways.
First of all, a decrease in overlap decreases the number of sam-
ples, which reduces the statistical power of the probability dis-
tribution estimation. Second, Studholmeet al. [43], [44] have
shown that with increasing misregistration (which usually coin-
cides with decreasing overlap) the mutual information measure
may actuallyincrease. This can occur when the relative areas
of object and background even out and the sum of the marginal
entropies increases, faster than the joint entropy. Studholmeet
al. proposed anormalizedmeasure of mutual information [44],
which is less sensitive to changes in overlap

They found a distinct improvement in the behavior of the nor-
malized measure for rigid registration of MR-CT and MR-PET
(positron emission tomography) images.
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Collignon [11] and Maes [57] have suggested the use of the
entropy correlation coefficient(ECC), another form of normal-
ized mutual information. NMI and ECC are related in the fol-
lowing manner: .

Normalized mutual information was used in a large number
of studies [24], [26], [30], [32], [36], [37], [42], [48], [58]–[77].

An upper bound of mutual information was derived by Sk-
ousonet al. [78].

3) Spatial Information: A drawback of mutual information
as it is commonly used, i.e., based on the Shannon entropy, is
that the dependence of the gray values of neighboring voxels is
ignored. The original Shannon entropy [4]doesinclude a de-
pendence of preceding signals, but the definition used in prac-
tice is the one for independent successive signals. The assump-
tion of independence does not generally hold for medical im-
ages. Incorporating the dependence of the gray values of neigh-
boring voxels, what we term the spatial information of the im-
ages, could improve registration.

As mentioned, Rodriguez and Loew [52] employ the Jumarie
entropy, which considers the gray value differences of neigh-
boring voxels in an image. Studholmeet al. [79] compute the
mutual information of two images together with a labeling of
one of the images. Voxels with identical gray values can then
be differentiated when they belong to different regions. The use
of a cooccurrence matrix has been put forth by Rueckertet al.
[80]. The cooccurrence matrix of distanceof an image is a
2-D histogram giving the frequencies of two gray values in the
image being distance apart. Rueckertet al. show the effect
the method has on curved registration of MR images. Another
method of incorporating spatial information is to combine mu-
tual information with a measure based on the gradients at cor-
responding points. The measure seeks to align gradient vectors
of large magnitude as well as of similar orientation [69], [81].
A slightly adapted version of the measure is used by Lötjönen
and Mäkelä for curved registration [82].

C. Transformation

The transformation applied to register the images can be cat-
egorized according to the degrees of freedom. We define arigid
transformation as one that includes only translations and rota-
tions. Although in the literature, rigid transformations are some-
times allowed to include scaling, we classify such transforma-
tions asaffine. An affine transformation can furthermore in-
clude shearing. This type of transformation maps straight lines
to straight lines and preserves the parallelism between lines.
Theperspectivetransformation differs from the affine transfor-
mation in the sense that the parallelism of lines need not be
preserved. It is usually applied in 2-D/3-D registration. No in-
stances of “true” perspective transformation were encountered.
All methods using a perspective transformation limited the op-
timization to the rigid-body or affine parameters; the projective
parameters were kept fixed. The final class consists ofcurved
transformations, which allow the mapping of straight lines to
curves.

1) Rigid: Translations and rotations suffice to register
images of rigid objects. Examples include registration of bone

or of the brain when neither skull nor dura has been opened.
Rigid registration of images based on mutual information has
been applied in a large number of papers [11], [12], [21]–[23],
[27], [31], [35], [41], [43]–[45], [47], [49], [51], [53], [57],
[63], [71], [83]–[101]. Rigid registration is also used to approx-
imately align images that show small changes in object shape
(for example, successive histological sections [102], [103]
and serial MR images [24], [26]) or small changes in object
intensity, as in functional MR time series images [93], [104].

2) Affine: The affine transformation preserves the paral-
lelism of lines, but not their lengths or their angles. It extends
the degrees of freedom of the rigid transformation with a
scaling factor for each image dimension [25], [32], [58], [105],
[106] and, additionally, a shearing in each dimension [13], [28],
[38], [99], [107], [108]. In [109], [110] an affine registration
with nine degrees of freedom is performed to correct calibra-
tion errors in the voxel dimensions. Holden [110] furthermore
measures therelative scaling error between scans. Shekhar
and Zagrodsky [33] compare registration of ultrasound images
using transformations of increasing complexity (rigid, rigid
with uniform scaling, rigid with nonuniform scaling and fully
affine).

3) Curved: Curved registration methods can differ on sev-
eral aspects. The mutual information measure can be calculated
globally, on the entire image, or locally, on a subimage. Smooth-
ness of the deformation can be achieved in different ways and
the deformation can be either free-form (any deformation is al-
lowed) or guided by an underlying physical model of material
properties, such as tissue elasticity or fluid flow. Besides these
aspects, methods can also differ in smaller, implementational
details, but such differences will not be discussed.

Meyeret al. [39], [111]–[116] compute the mutual informa-
tion measure globally. The deformation is determined by thin-
plate splines through a number of control points, which are ini-
tialized by the user, but are adapted automatically. The number
of control points defines the elasticity of the deformation. Apart
from registration of 3-D multimodality images, the method was
applied to warp a slice into a volume, including out-of-plane de-
formations [117]. Also computing both measure and deforma-
tion globally is Horsfield [118], who uses a third-order polyno-
mial to nonuniformly correct MR images for eddy current dis-
tortion.

Other methods compute the mutual information globally, but
find the deformation on a local scale. A grid of control points
is defined to determine the deformation, usually in a multires-
olution manner. The points of the grid are moved individually,
defining local deformations. Transformations in between con-
trol points are propagated by linear interpolation [29], [119],
Gaussian kernels [120] or other symmetrical, convex kernels
[82], [121]. Rueckertet al. [74], and Studholmeet al. [37], [76]
calculate B-splines through the control points, which have a
local region of influence (as opposed to thin-plate splines). A
similar method is employed in [72], [73], [122]. The effect of
the choice of transformation (rigid, affine or curved) on regis-
tration of MR breast images was studied by Dentonet al. [62].
The method by Rueckert was adapted to allow for rigid struc-
tures within deformable tissue by Tanneret al.[77] through fix-
ation of intercontrol point distances. A nonuniform deformation
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grid of active and passive control points is described in [75]. Ap-
plications of the method include propagation of segmentations
[42], [61] and the construction of a statistical deformation model
[123].

Contrary to the previous methods which compute mutual in-
formation globally, some methods compute the mutual infor-
mation measure for subsets of the images [30], [46], [60], [65],
[124], [125]. A problem with local computation of mutual in-
formation is that the results can suffer from the small number of
samples. Usually, relatively large subimages are required, which
prohibits deformations on a very small scale. Several adapta-
tions have been proposed to overcome this problem. Likar and
Pernŭs [66] define local probabilities as a weighted combination
of the probability distribution of a subimage and the global dis-
tribution. Maintzet al. [126] compute a conditional probability
distribution of intensities in one image given intensities in the
other image, based on a global joint histogram. Using the con-
ditional distribution, translations of subimages are computed.
Finally, Rueckertet al. [80] enhance the power of locally com-
puted measures by including spatial information, in the form of
cooccurrence matrices.

Hermosillo and Faugeras [127] compare global and local
computation of both mutual information and the correlation
ratio [128]. Schnabelet al. [129] propose a validation method
for curved registration, which is demonstrated on mutual
information.

Most methods ensure smoothness of the deformation field,
by filtering of the vector field (e.g., [29], [64]–[66], [130])
and/or by regularization terms to constrain local deformations
(e.g., [29], [30], [36], [74], [75], [82], [125], [127]). Rohlfing
and Maurer [73] incorporate a regularization term that prevents
compression of contrast-enhanced structures.

To the best of our knowledge, there are only two papers on
inclusion of physical models of tissue deformation in mutual-
information-based curved registration methods. Both Hataet al.
[124] and Hermosillo and Faugeras [127] use a model of an
elastic solid material for regularization of the deformation.

D. Implementation

The importance of the implementation of a mutual-informa-
tion-based method should not be underestimated, since imple-
mentational decisions can have a large influence on the regis-
tration results. The main choices involve interpolation, estima-
tion of the probability distributions and optimization. Addition-
ally, one may choose to improve the speed of registration. Zhu
and Cochoff [101] study the influence of several implementa-
tion choices, viz. optimization method, interpolation method,
number of histogram bins and multiresolution approaches. The
choice of implementation remains a matter of debate. An op-
timal implementation has not been agreed on, partly because
all aspects of the implementation interact. For instance, one
cannot compare optimization methods without taking the other
aspects into account, because these influence the smoothness of
the function to be optimized.

1) Interpolation: When transforming points from one
image to another, interpolation is usually required to estimate
the gray value of the resulting point. In this section, we focus

Fig. 3. Interpolation weights; the areasw for 2-D linear interpolation.

on interpolationduring the registration process, which is ap-
plied numerous times and which, consequently, necessitates a
tradeoff between accuracy and speed. In addition, interpolation
is required to yield a final, registered image. Since this task is
performed only once, speed is less of an issue and a different
choice of interpolation method (e.g., a higher order method)
may be more appropriate.

The most popular technique of interpolation is linear inter-
polation, which defines the intensity of a point as the weighted
combination of the intensities of its neighbors. The weights are
linearly dependent on the distance between the point and its
neighbors, as shown in the 2-D example in Fig. 3. A handful
of papers report the use of nearest neighbor interpolation
(assigning the gray value of the spatially closest neighbor),
often for speed [32], [47], for comparison to other interpolation
methods [57], [101] or for the initial testing of a novel idea [52].

An interpolation method specifically designed to create joint
histograms of intensities is partial volume interpolation, intro-
duced by Collignon [12]. It uses the weights of linear interpola-
tion, but not to compute a weighted intensity and update a single
histogram entry, like linear interpolation. It uses the weights for
fractional updates of the histogram entries corresponding to a
transformed point and each of its neighbors. Effectively, this cre-
ates smoother changes of the joint histogram for varying trans-
formations and hence a smoother registration function2 . The
method has been adopted by several others [33], [57], [70], [88],
[96], [125].

Maes [92] introduced partial intensity interpolation. This
method calculates a weighted average of the neighboring gray
values, identical to linear interpolation. Then, however, two
histogram entries (those corresponding to the floor and the
ceiling of the weighted average) are updated by a fractional
amount.

Thévenaz and Unser [97] are advocates of higher order in-
terpolation methods. They suggest cubic interpolation, partic-
ularly in multiresolution methods. Cubic spline interpolation is
also used in [104] and [122]. Fig. 4 shows 1-D interpolation ker-
nels for linear, cubic and sinc interpolation. Sinc interpolation is
the ideal kernel in theory, but it is impractical for two reasons:
1) the images are expected to be band-limited, which medical
images rarely are and 2) the width of the kernel is infinite. The
cubic kernel has a larger extent than linear interpolation and is,
therefore, more expensive to compute, but does approximate the
sinc kernel better. The influence of the order of the interpolation
method is studied by Netschet al. [93].

A serious problem with interpolation is that it can cause pat-
terns of artefacts in the registration function. When the grids of

2The registration measure as a function of transformation.
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(a) (b) (c)

Fig. 4. Several 1-D interpolation kernels: (a) linear; (b) cubic; and (c) sinc
(truncated).

two images can be aligned for certain transformations, no inter-
polation is required for such transformations. Because interpola-
tion influences the value of the registration measure, the absence
of interpolation—at grid-aligning transformations—can cause a
sudden change in the value of the measure, resulting in a pat-
tern of local extrema. The occurrence of such patterns has been
noted in several publications [11], [92], [131]. In [132], the dif-
ferent patterns created by linear and partial volume interpolation
are extensively studied. Holden [110] describes the existence of
artefacts for both mutual information and the ratio image uni-
formity [133] measures when using linear interpolation and pro-
poses low-pass filtering as a solution. Likar and Pernus̆ [66] try
to overcome the severe artefacts in the registration functions of
subimages, either by a random resampling of the image grids
or by including the probability distribution of the entire images.
Chen and Varshney [134] employ ageneralized partial volume
interpolation method, which is identical to partial volume in-
terpolation using a higher order kernel instead of a first-order
one. Interpolation artefacts deserve serious attention, not only
because they can cause misregistrations, but also because they
prohibit subvoxel accuracy.

2) Probability Distribution Estimation:The most straight-
forward way to estimate the joint probability distribution of
intensities in two images is to compute a joint histogram of
intensities. Each entry in the histogram denotes the
number of times intensity in one image coincides within the
other image. Dividing the entries by the total number of entries
yields a probability distribution. The probability distributions
for each image separately are found by summing over the rows,
resp. columns, of the histogram. This method is chosen in the
majority of papers [12], [22], [32]–[36], [38], [40], [44], [45],
[47], [51], [52], [57], [58], [66], [72], [74], [77], [88], [91],
[101], [106], [107], [112], [116], [120], [121], [125], [126],
[134]–[136]. Camp and Robb [59] propose a method that better
distributes the entries across all histogram bins.

Another frequently used method of distribution estimation
is Parzen windowing. Given a set of samples, the proba-
bility of occurring is the sum of the contributions of each
sample from to . The contributions are functions of the
distance between and . This results in the following defini-
tion of the probability of given a sample

The weighting function is a Gaussian function in most im-
plementations described in the literature [83], [96], [99], [100],
[108], [119], [127]. Other choices are double exponential func-
tions [137] and splines [97], [122].

Whereas the simple histogram method places a spike function
of value 1 at the bin corresponding toand updates only a single
bin, Parzen windowing places a kernel at the bin ofand updates
all bins falling under the kernel with the corresponding kernel
value.

3) Optimization: The registration measure as a function of
transformation defines an-dimensional function, with the
degrees of freedom of the transformation. The optimum of this
function is assumed to correspond to the transformation that cor-
rectly registers the images. Unfortunately, the registration func-
tion is generally not a smooth function, but one containing many
local maxima. The local maxima can have two different causes.
Some represent a local good match of the two images. Others
are imperfections inherent to the implementation, for example,
local maxima can occur as a result of interpolation or because of
changes in the overlapping part of the images. Local maxima in
the registration function can be reduced, among other things, by
improving implementation choices (e.g., a higher order interpo-
lation method), by filtering the images to reduce noise or by in-
creasing the bin size of the intensity histogram. Because of the
existence of local maxima, the choice of optimization routine
has a large influence on the results of the registration method,
particularly on the robustness of the method with respect to the
initial transformation.

A second important property of the registration function that
influences the choice of optimization method is the capture
range of the optimum [1], [2], [35], [44]. For intensity-based
registration measures, it is possible that a large misregistration
of two images results in a higher value of the measure than the
correct transformation. The desired maximum may not be the
global maximum of the search space and only part of the search
space leads to the desired maximum. This has two consequences
for optimization of the registration function. First of all, an
optimization started outside the capture range of the desired
maximum has little chance of leading to a correct registration
of the images. Second, probabilistic optimization routines such
as some multistart methods and genetic algorithms, may prove
to be less suitable for optimization of the mutual information
measure, because they can move outside the capture range. The
extent of the capture range depends on the registration measure
and on image properties (e.g., modality, contents, field of view)
and cannot be determineda priori.

We will only mention some characteristics of the optimization
methods. Detailed descriptions can be found in general works
on optimization techniques such as [138] and [139] and in the
papers cited or references therein.

A popular method is Powell’s routine, which optimizes each
transformation parameter in turn. It does not require function
derivatives to be calculated, but is relatively sensitive to local
optima in the registration function [11], [21], [34], [51], [52],
[57], [59], [65], [66], [70], [88], [96], [101], [108], [140], [141].

Equally popular is the Simplex method, which does not
require derivatives either, but, contrary to the previous method,
considers all degrees of freedom simultaneously [22], [32],
[33], [38]–[40], [64], [68], [85], [89], [101], [105], [111], [116],
[118], [135], [141]. It is not known for its speed of convergence.

Plattardet al. [47] use a combination of the Powell and Sim-
plex methods, whereas Kagadiset al. [28] combine Powell and
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a genetic algorithm. Jenkinson and Smith [107] propose an op-
timization routine that extends Powell’s method with initializa-
tion and a multistart technique.

Rodriguez and Loew [53] combine Powell with topograph-
ical global optimization. This involves a graph structure with the
nodes denoting points in the search space and the arcs pointing
in the direction of nodes with lower function values. In this
manner, the influence zones of local maxima can be determined
and a number of local maxima is selected based upon the graph
to start optimizations from.3

Although being one of the simplest optimization techniques,
hill-climbing optimization was shown to produce good results in
a multiresolution scheme, with the step size of the hill-climbing
method decreasing as the image resolution increased [30], [43],
[44].

Methods that do require function derivatives (whether
mathematically derived or numerically estimated) are gradient
ascent [36], [37], [45], [72]–[74], [99], [100], [121], [127],
[140]–[142], quasi-Newton methods [122], [141] and the
method by Levenberg–Marquardt [97], [141]. Exact expres-
sions for the gradient of mutual information are derived in
[141].

A method little used in image registration is simulated
annealing, which has the seemingly paradoxical property of
sometimes taking a step in the “wrong” direction (i.e., toward
a smaller function value when the goal is maximization)
[91], [94], [106]. This move is allowed occasionally to make
escapes from local maxima possible. Equally uncommon
are genetic algorithms [50], [60], which are based on the
survival-of-the-fittest principle of combining current elements
and selecting the best of the new elements.

An unconventional approach of finding the optimal transfor-
mation is employed in [41]. Template matching of subimages is
used to define a set of corresponding points (the center points
of the subimages), based upon which a rigid transformation is
determined.

To improve the chances of finding the global optimum of the
registration function, Chen and Varshney [134] compute the mu-
tual information both of the entire images and of four subim-
ages, assuming that when the global mutual information is max-
imum, this should also hold for subimages. Zagrodskyet al.[38]
use the mutual information value of three intensity histograms
of different bin widths simultaneously to find the optimal trans-
formation.

Optimization is often performed in a multiresolution manner,
as this is expected to decrease the sensitivity of the method to
local maxima in the registration function. The term multiresolu-
tion can be used with respect to the images, in the sense that the
images are down- or upscaled to a number of resolution levels
[21], [29]–[32], [35], [36], [44], [46], [48], [51], [71], [82], [97],
[100], [101], [120], [127], [140], [141]. Multiresolution can also
apply to the deformation grid of curved registration methods
[29], [30], [36], [37], [46], [60], [64], [65], [72], [74]–[76], [82],
[94], [121], [122], [125].

3We have adapted the description of the method to apply to functionmaxi-
mization.

Holmes et al. [140] compare two optimization methods
together with several other aspects such as subsampling and
thresholding to extract objects. The most extensive comparison
of optimization methods for mutual-information-based image
registration, including multiresolution implementations, can be
found in [141].

4) Acceleration: Apart from improving the behavior of a
method with respect to local maxima in the registration func-
tion, multiresolution schemes can also improve the speed of an
algorithm. A rough estimate of registration is found in relatively
little time using downsampled images, which is subsequently re-
fined using images of increasing resolution. Registration at finer
scales should be faster as a result of a reasonable initial estimate.
In [70], simple equidistant subsampling, both with and without
Gaussian blurring of the images, is compared for registration
of MR, CT, and PET images. Similarly, Zhu and Cochoff [101]
compare subsampling both with and without averaging of gray
values. Maeset al.[141] study the behavior of a large number of
optimization methods in combination with multiresolution ap-
proaches. Rohlfing and Maurer [73] decrease the computational
demand by selectively refining the deformation grid, based on a
local entropy measure. Rohdeet al. [121] base the selective re-
finement on the gradient of the registration function, assuming
that a large gradient is likely to denote a mismatched area. Simi-
larly, Schnabelet al.[75] label selected control points as passive,
based either on a segmentation of the image or local statistical
measures. Matteset al.[122] combine a hierarchical refinement
of the deformation grid with a hierarchical degree of Gaussian
blurring of the images before registration.

Several authors replace costly calculations by lookup tables.
Sarrut and Miguet [143] use lookup tables to avoid several com-
putations for each voxel, such as the calculation of the weights
of interpolation. Meiheet al. [144] speed up the Parzen win-
dowing process using lookup tables for the Gaussian functions.
Zöllei et al. [45] employ sparsehistogramming, i.e., using a
small number of samples.

E. Image Dimensionality

The majority of papers treats registration of 3-D images. We
will next discuss the exceptions: two 2-D images or a 2-D and
a 3-D image.

1) 2-D/2-D: The difficulty with 2-D images is that the
number of samples usually is substantially smaller than with
3-D images. This can result in a less reliable estimation of
the probability distributions. Good results have been reported
nonetheless. The choice for 2-D images is often guided by
the application [34], [47], [65], [66], [87], [95], [103], [106],
[108], [112], [119], [145]. Other times 2-D images are chosen
for initial testing of a novel idea, frequently with the intention
of extension to three dimensions [52], [60], [111], [131].

2) 2-D/3-D: Registration of 2-D and 3-D images is regularly
applied to find the correspondence between the operative scene
and a preoperative image. Viola and Wells [13], [99], for ex-
ample, devised a method of using mutual information to register
2-D video images to a model of a 3-D object (usually based on
an MR or a CT image). Other papers in this area include [86],
[142]. Bansalet al.[83] register 2-D portal images to a preoper-
ative CT in order to verify the position of the patient with respect
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(a) (b) (c)

Fig. 5. Different definitions of the mutual information (shaded areas) of three images (a)–(c). The dark gray color in (c) signifies that the area is counted twice.
The circles denote the entropy of an image; joint entropy is the union of circles.

to the radiotherapy treatment plan. They propose an iterative ap-
proach, which switches between segmenting the images based
on the current registration and registering the images based on
the current segmentation. Other papers on registration of 2-D
portal images and CT are [47], [96]. Zölleiet al. [45] and Kim
et al. [89] register CT and 2-D fluoroscopy images to verify pa-
tient position.

Kim et al.[135] correct for motion in functional MRI (fMRI)
acquisitions by registering fMRI slices into a 3-D anatomical
MR scan. In [117], out-of-plane deformation of the slices is
introduced. Calibration of an ultrasound probe using 2-D/3-D
registration is described by Blackallet al. [58], registering 2-D
B-mode ultrasound images to an MR volume to allow recon-
struction of a 3-D ultrasound image.

A comparison of six intensity-based registration measures,
for registration of a 2-D fluoroscopy image to a CT volume, has
been made by Penneyet al. [31].

F. Number of Images

Commonly, two images are involved in the registration
process. However, in certain situations several images of a
scene are to be registered or a series of images taken at different
times needs to be compared.

When more than two images are employed, two types of reg-
istration problems can be distinguished: with known and with
unknown inter-image geometry. In the first case, the transfor-
mations between several images are known and only a single
transformation has to be determined. In the second case, no
knowledge about the transformation between individual images
is available and multiple transformations are to be found to
transform the images to a common coordinate system.

1) More Than Two Images, With Known Inter-Image Geom-
etry: An example of the first type is the problem of determining
the position of a 3-D object amidst a number of 2-D images
of the object, taking from different, known, angles. Several dif-
ferent mutual-information-based solutions have been proposed
for this problem. One could simply sum the measures of each
2-D image and the 3-D image [45], [83], [86], [89] or combine
the intensity correspondences for each 2-D image and the 3-D
image in a single joint histogram [96]. Clarksonet al. [142]

have compared three methods of combining measures (adding
the measures of individual 2-D images and the 3-D image, alter-
nating between separate optimizations or creating a single 2-D
histogram of intensity correspondences in each of the 2-D im-
ages and the 3-D image). This was applied to registration of 2-D
video images and a CT volume.

A similar problem, that of registering an MR volume to a set
of 2-D ultrasound images, is tackled by Blackallet al. [58] by
gathering the corresponding intensity pairs for each slice and
the volume into a single joint histogram. Pagoulatoset al. [68],
on the other hand, optimize the sum of the mutual information
of each ultrasound slice and the MR volume.

Another example of a multidimensional registration problem
that requires only a single transformation is given by Andersson
and Thurfjell [146], who register two “series” of images (one
series consisting of two differently weighted MR images and
the other of a PET transmission and an emission scan), using a
higher dimensional joint intensity histogram. Boes and Meyer
[111] also propose to use higher-dimensional mutual informa-
tion to register two images, using a third image for additional
information (which is assumed to be in register with one of the
other two images). Studholmeet al.[79] use higher dimensional
mutual information to include a segmentation of an image in the
registration to another image.

An interesting question is how to define higher dimensional
mutual information. In textbooks and theoretical essays on
generalized (i.e., higher dimensional) mutual information [17],
[147], [148], the definition of the measure for three images
corresponds to Fig. 5(a). In this Venn diagram notation, the
shaded area denotes the mutual information between images

and . A property of this definition is that it is not
necessarily nonnegative [17]. In the medical image registration
literature a different definition has been proposed [79], [111]

which can also be written as

This corresponds to the shaded area in Fig. 5(b) (the darker area
is counted twice). This definition is nonnegative, contrary to the
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previous definition. However, it does not define the mutual in-
formation of three images as one would expect, namely as the
information that is shared between all three images. The def-
inition depicted in Fig. 5(c) is a slightly different application.
Studholmeet al.[79] and Lynchet al.[48] use the mutual infor-
mation of theunionof two images (a bivalued image) together
with a third image.

2) More Than Two Images, With Unknown Inter-Image Ge-
ometry: One instance of a registration problem from the second
class (requiring more than one transformation) is described by
Lynch et al. [48], who register three images. They circumvent
the problem of having to optimize several transformations si-
multaneously by first registering two images. The third image is
registered to the previous two using a 2-D intensity distribution
for the registered images, which results in a higher dimensional
mutual information measure.

Krückeret al.[113] register several 3-D ultrasound scans, ac-
quired under different angles, to form a compounded 3-D image
with a better signal-to-noise ratio (SNR). The first scan is used
as the reference scan to register all subsequent scans to.

Images of a patient that have been taken over a period of time
need registration to study changes through time. Usually, the
first recorded image acts as a reference to which all subsequent
images are registered [24], [26], [108], [119], although some-
times another image is more suitable as a [72]. Kimet al. [135]
correct for patient motion during the acquisition of fMRI time
series by registering each slice into an anatomical volume.

G. Modalities

Mutual information has been applied to a wide variety of
image modalities. These can be subdivided into applications of
monomodality images, of multimodality images, of an image
and a model, and of an image to physical space (e.g., using in-
traoperative images of a patient).

1) Monomodality: Even though, when first introduced, one
of the main advantages of mutual information was its capability
to register multimodality images, the measure has also been
shown to be well suited to registration of images of the same
modality. The following is a brief overview of modalities found
in the literature. Although MR images can have very different
characteristics for different scanning protocols, we have classi-
fied all MR registration problems as monomodality.

MR: Registration of MR images has been described in
many publications [21], [51], [52], [149], often for curved trans-
formations [26], [27], [29], [36], [37], [46], [62], [64], [72], [74],
[77], [80], [94], [111], [114], [117], [120], [121], [123], [124].
A study by Holmeset al. [140] includes matching of MR-T1
and MRA images. Netschet al. [93] register time series of per-
fusion MR. Some first results of registering interventional MR
images can be found in [23], [67], [150]. Time series of fMRI
images require registration to detect changes in brain function
[93]. Changes in brain anatomy are studied in [24], [42]. Fur-
thermore, registration is needed to map the functional informa-
tion onto an anatomical MR scan [30], [71], [76], [125]. Kimet
al. [135] register individual fMRI acquisitions to an anatomical
image to correct for patient motion. Freire and Mangin [104]
register fMRI images to correct for patient motion and they
study the sensitivity of several registration measures to activated

areas. Registration to correct for eddy current distortions in dif-
fusion-weighted images is described in [108], [118]. Hillet al.
[151] employ a curved registration method for intraoperative
brain shift measurement. A rigid registration method is used to
estimate brain motion with respect to the cranium as a result of
patient position [63]. Studholmeet al. [37] estimate tissue de-
formation of the brain after electrode implantation. Liuet al.
[152] compare their proposed measure for extracting the mid-
sagittal plane to mutual information.

CT: In the mutual information literature, CT is usually
combined with other modalities and few monomodality cases
have been reported. Extraction of the midsagittal plane is de-
scribed by Liuet al. [152]. Martenset al. [153] use registra-
tion of pre- and postoperative CT images to validate pedicle
screw placement, whereas Bergmanset al. [154] validate root
canal treatment. An unusual application is described by Królet
al. [91] who use registration to find suitable locations for bone
grafting.

SPECT: Holmeset al. [140] compare mutual information
with a measure similar to Woods’ measure [5]. Radauet al.[32]
compare normalized mutual information with two other mea-
sures for the registration of single photon emission computed
tomography (SPECT) images to an atlas, created by averaging
of a number of SPECT images. The performance of several mea-
sures for registration of ictal and interictal images is reported in
[85]. Registration of transmission images to achieve alignment
of the corresponding emission images is described by Van Laere
et al. [105].

PET: In Holmes’ comparison of mutual information and
Woods’ measure, PET–PET registration is one of the modality
combinations described [140].

US: Meyer et al. [39] use mutual information to match
breast ultrasound images, whereas Zagrodskyet al. [38], [40]
register two series of cardiac images. Shekhar and Zagrodsky
[33] study the effect of median filtering, number of histogram
bins and interpolation method on the smoothness of the registra-
tion function of cardiac ultrasound images. Krückeret al. [113]
form a 3-D ultrasound image with better SNR by registering
several 3-D scans, which were acquired under different angles.

Microscopy: Registration of histological sections has
been reported both using rigid transformations [102], [103],
[145] and curved ones [65], [66].

X-Ray: Sanjay–Gopalet al. [95] compare mutual in-
formation and the correlation coefficient for registration of
intrasubject mammograms. Plattardet al.[47] register both 2-D
portal images and portal to x-ray images to verify the position
of the patient with respect to previous radiotherapy treatment
sessions.

Various: Ritter et al. [106] apply mutual information to
the registration of retinal images, acquired by a fundus camera.
Another paper on retinal images is the one by Butz and Thiran
[50], who maximize the mutual information of the gradient im-
ages. Bakeret al.[119] register series of electrophoresis images
(images of protein, separated based on their isoelectric charge)
in order to simplify segmentation. Sjögreenet al. [34] register
emission and transmission scintillation images of an entire body.

2) Multimodality: Mutual information has been studied for
many combinations of modalities.
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MR-CT: A popular combination, and one of the earliest
described, is registration of MR and CT images [11], [41],
[43], [44], [49], [50], [53], [57], [69], [92], [97], [100], [103],
[126], [130], [140]. An interesting category are the papers
that report on registering what are commonly known as the
“RREP” or “Vanderbilt” images [41], [44], [57], [69]–[71],
[97], [103], [136], [141]. These images are publicly available
and an accurate gold standard is known [155] (although it has
been suggested that registration by mutual information may in
some cases yield more accurate results than the gold standard
[92]). This is one of the few sets of images that allows direct
comparison of the accuracy of different methods.

MR-PET: A variety of applications of MR-PET registra-
tion has been recounted [11], [29], [41], [43], [44], [57], [69],
[79], [92], [97], [100], [116], [140], [146]. The RREP images
mentioned above also include MR and PET image pairs.

MR-SPECT: Comparisons between mutual information
and other measures for registration of MR and SPECT images
are made in [84], [94], [140]. Other publications on the subject
of MR-SPECT matching are [48], [98], [101], [103].

MR-US: Registration of ultrasound images to other
modalities using mutual information is a relatively unexplored
field. Rocheet al. [156] study the possibilities of using mutual
information to register ultrasound to anatomical MR images,
while Slomkaet al. [22] match ultrasound with MRA images.
Blackall et al. [58] use registration of ultrasound and MR
images to calibrate the ultrasound probe. Because ultrasound
images can be acquired relatively easily during a procedure,
Pagoulatoset al. [68] report initial results of registering
anatomical MR and ultrasound images with the intent of using
the method for image-to-physical-space registration.

CT-PET: Both Erdiet al.[25] and Matteset al. [122] reg-
ister CT and PETtransmissionimages of the thorax to achieve
fusion of CT and PETemissionimages. CT-PET registration of
the thorax is furthermore described by Meyeret al. [116].

CT-SPECT: Meyer et al. [116] also registered CT and
SPECT images, now focusing on the abdomen, as did Koral
et al. [90]. Kagadiset al. [28] compare a surface-based and a
mutual-information-based registration routine.

CT-Various: CT has been registered using mutual infor-
mation to several other modalities, such as 2-D video images
[86], [142], 2-D fluoroscopy images [31], [45], [89] and portal
images [47], [83], [96].

Microscopy: Flynn et al. [87] match stained histological
sections with the corresponding radioluminographs (RLG) of
the sections. Kimet al. [112] warp a histological section to a
video image taken before slicing.

3) Modality to Model: By a model we denote any kind of
simplified or processed image. A model can be a simulated
image [42], [61], [107], [115] or a segmentation [120], [157].
Another possibility is an average image or a statistical model
composed of several images [29], [32], [105].

4) Modality to Physical Space:A previously acquired
image of a person can be registered to the actual person, via
an intraoperative image. This is what we term “registration to
physical space.” A common application in radiotherapy is the
verification of patient position with respect to a treatment plan
based on a previously acquired image. Usually, this involves

registration of a pretreatment CT to portal [47], [83], [96] or
fluoroscopy images [45], [89].

Registration to physical space is also required in
image-guided treatment, for transferring the information
of a pretreatment image (and any treatment plans based upon
the image) to a patient on the operating table. Preoperative
images are registered to intraoperatively acquired images,
such as video images from the operation microscope [86],
[142], ultrasound images [68], fluoroscopy images [31], PET
transmission images [25] or interventional MR images [23],
[67], [150].

A final application is tracking of a person’s movements. Viola
and Wells [13], [99] achieve this through registration of a 3-D
model to video images.

H. Subject

The subject in the images to be registered can be the same (in-
trasubject registration), can differ (intersubject registration) or
one of the images can be a model. Intersubject registration based
on mutual information is a highly relevant topic, because it can
form the basis for methods such as tissue segmentation (e.g.,
[42], [158]), bias field correction in MR images (e.g., [159])
and analysis of images of groups of subjects (e.g., [160], [161]).
Only a small percentage of the references deal with intersub-
ject registration, which is partly because intersubject registra-
tion using mutual information has only recently gained more at-
tention and partly because we have not included all papers that
use registration as one of several steps in an application, but that
focus on the application.

Some of the intersubject registration methods include a model
and those have been treated in Section IV.G.3. Hellieret al.
[162] compare five measures for intersubject registration of MR
brain images. Studholmeet al. [36], [160] use a single image
as a reference for intersubject registration in cohort studies of
patients. Rohdeet al. [121] register MR images of different pa-
tients using a curved transformation. Rangarajanet al.[145] reg-
ister sets of sulcal points sets of different individuals. Finally,
Rueckertet al. [123] register images of different patients in
order to create a statistical deformable model of brain anatomy.

I. Object

The object in medical image registration is the part of the
anatomy involved. We have found a varied list of objects, which
is summarized in this section.

Brain: A large part of the literature of mutual-informa-
tion-based registration concerns head or brain images [11], [12],
[14], [24], [26]–[30], [32], [35]–[37], [41]–[44], [47], [49]–[53],
[57], [64], [67], [69]–[71], [76], [80], [84], [86], [88], [92]–[94],
[97]–[101], [104], [107] [108], [111], [115]–[117] [123], [125],
[126], [135], [136], [140]–[142], [150], [160], [162].

Thorax/Lungs: Moving downwards we come to the thorax
and the lungs, which have been the central theme in a small
selection of papers [25], [89], [116].

Spine: Penneyet al. [31] use images of a realistic spine
phantom and add structures (soft tissue, stents) from clinical im-
ages to assess the performance of several intensity-based regis-
tration measures. Martenset al. [153] apply registration to pre-
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and postoperative CT images to validate pedicle screw place-
ment.

Heart: Zagrodskyet al. [38], [40] register two series of
cardiac ultrasound images, with each series of images a se-
quence of heart cycles. In [33], several adaptations to the method
are made to allow affine registration.

Breast: Registration of breast images has been described
for various imaging modalities, in particular, MR [46], [62],
[74], [77], [114], [149], X-ray [95] and ultrasound [39], [113].

Abdomen/Liver:Several papers have been published on
registration of abdominal images [52], [90], [116] and of the
liver [23], [72].

Pelvis: As registration of pelvic images is quite a chal-
lenging task, almost all references given propose some adap-
tations (whether large or small) to the standard method of mu-
tual-information-based matching [21], [79], [83].

Tissue: Histological sections of tissue are the object of
registration in a number of studies [65], [66], [87], [102], [112],
[145].

Various: Retinal images are registered by Ritteret al.
[106] and by Butz and Thiran [50]. Lynchet al. [48] align two
MR images and a SPECT image of the knee. MRA and power
Doppler ultrasound images of carotid bifurcations are registered
by Slomkaet al. [22] and the resulting transformation is used
to register B-mode ultrasound and MRA. Sjögreenet al. [34]
register whole-body scintillation images. Dental CT images are
registered by Bergmanset al. [154].

J. Comparison Studies

By the term “comparison study” we mean all papers written
with the sole intention of comparing several different registra-
tion measures and not papers that primarily intend to present
a new method (which often includes a comparison to other
methods). Admittedly, the dividing line is thin. Naturally, all
studies include mutual information.

Studholmeet al. apply three measures to rigid registration
of MR and CT brain images [49] and five to MR and PET
images [35]. A number of measures based on a joint inten-
sity histogram is compared by Bro–Nielsen [163], for regis-
tration of MR and CT images. By far the most extensive and
the most important comparison study was performed by West
et al. [155]. It originally comprised 16 methods, but has been
extended substantially since. It has the advantage that the regis-
trations were done by the research groups themselves. The ac-
curacy of the methods for rigid registration of clinical CT-MR
and PET–MR images pairs was established relative to a method
based on bone-implanted markers. In [164], the performance of
a number of the methods in the study is compared, after subdi-
vision into surface-based and intensity-based methods. Penney
et al. [31] study 2-D/3-D registration of fluoroscopy and CT
images using six measures. A phantom is used, but the robust-
ness of the measures with respect to differences in image con-
tent is studied by extending the phantom images with soft tissue
structures and interventional instruments from clinical images.
Brinkmannet al. [85] study three measures for registration of
ictal and interictal SPECT, using phantom, simulated and clin-
ical images. One manual and four automated methods are com-
pared by Flynnet al. [87]. They apply the methods to registra-
tion of radioluminographs and histological sections, focusing

on accuracy (versus markers). Nikouet al. [94] adapt two ex-
isting measures by including robust estimators and compare all
four measures to mutual information. Monomodality registra-
tion of MR images and multimodality registration of MR and
SPECT images is studied with regard to accuracy (versus a
manual solution), robustness with respect to starting estimate
and the presence of nonbrain structures. Barndenet al. [84]
compare the accuracy of five methods to register SPECT and
MR images against that of skin fiducials. Mutual information is
outperformed by two methods designed specifically for regis-
tration of functional and anatomical images. Holdenet al. [27]
compare eight measures for registration of 3-D MR time series
of the brain. The property under scrutiny is consistency, which
is measured by registering images in triangles (to to
and back to ) and calculating the deviation of the composite
of the three transformations to the identity transformation. Car-
rillo et al. [23] apply one manual and four automated methods
to matching of differently weighted MR images (including con-
trast enhanced images). The accuracy (versus anatomical land-
marks) and the robustness (with respect to, e.g., field of view
and starting estimate) were investigated. Van Laereet al. [105]
describe the performance of three measures for registration of
SPECT transmission images. In [81], [136], mutual informa-
tion is compared to other dependence measures from informa-
tion theory, in particular, -information measures. Mutual in-
formation is a member of this class of measures, which are all
potential registration measures. Freire and Mangin [104] study
the performance of six measures on registration of fMRI images,
focusing on their sensitivity to activated areas. Nonrobust mea-
sures can give rise to erroneous activations in the analysis of the
images. Otte [30] compares two measures for curved registra-
tion of fMRI to anatomical MR data. Radauet al. [32] investi-
gate the sensitivity of three registration measures to (simulated)
defects in SPECT images. Four measures for registration of
MR and SPECT images are validated by Grovaet al. [88]. The
SPECT images are simulations, derived from the MR images.
Hellieret al.[162] evaluate intersubject registration of MR brain
images for five similarity measures. The transformation consid-
ered is curved except for the mutual information method, which
employs a rigid transformation. Four intensity-based measures
are evaluated by Sarrut and Clippe for registration of 2-D portal
and a 3-D CT image [96]. Two methods for CT-SPECT regis-
tration, one based on surfaces and one on mutual information,
are compared by Kagadiset al. [28]. Zhu [165] shows that mu-
tual information is a special case of cross entropy. Several other
cases are deduced (such as conditional entropy) which are suit-
able registration measures. Combinations of the measures are
compared for rigid registration.

To conclude, we present a list of papers that we did not con-
sider true comparison studies, but that do contain comparisons
between mutual information and other measures [12], [29], [44],
[46], [51]–[53], [64], [69], [89], [91], [93], [95], [102], [103],
[107], [127], [128], [130], [152], [156].

V. DISCUSSION

Over the past seven years, a lot of understanding has been
gained about mutual information as an image registration
measure. It is not an easy measure to understand: the under-
lying process of how misregistration influences the probability
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distribution is difficult to envisage. How it influences the
relation between joint and marginal distributions is even more
mystifying. In contrast, minimizing the distance between
corresponding points, for example, is a much easier concept
to grasp. However, extensive experimenting, applying, and
comparing of the measure has given a good deal of insight into
the strengths and weaknesses of mutual information.

From the diversity of modalities and objects found in the liter-
ature, it is clear that mutual information lives up to its reputation
of being a generally applicable measure. For numerous clinical
applications it can be used without need for preprocessing, user
initialization or parameter tuning. On the other hand, from the
conclusions of certain comparison studies [31], [84], [85] and
from the interest in adaptations of the measure [50]–[52], [69],
[79], [80] it can be inferred that mutual information may not
be a universal cure for all registration problems. For instance,
better results with other measures have been reported for reg-
istration of serial images which show relatively large changes
[31], [85], for extraction of the midsagittal plane of the brain
in MR images [152] and for curved registration of MR brain
images [130]. Furthermore, it may turn out that mutual infor-
mation is not the optimal measure for images of thin structures
(e.g., retinal images) or for the combination of MR and ultra-
sound images [156].

What we have learnt from past research is that normalization
of mutual information with respect to image overlap is a useful
adaptation of the measure. It has been shown by quite a number
of different methods that curved registration based on mutual
information is viable, although the best way to set about it is yet
unclear. We have seen that the choice of interpolation method
influences both accuracy and smoothness of the measure. Sev-
eral options for estimation of the probability distributions have
been proposed, while large numbers of optimization routines
have been investigated. The question remains, however, how
best to implement a mutual-information-based method. That
certain options are more promising than others has been shown,
but the optimal choice also depends on the interaction between
the various aspects of the implementation. For example, a higher
order interpolation method will most likely yield a smoother
registration function, which reduces the need for a highly com-
plex, yet robust, optimization technique. The best implementa-
tion will always be a balance between time constraints and the
demands of the application. Naturally, comparing the different
implementations proposed is a problem because of the different
applications, the different test sets and sometimes also because
of a lack of detail described. A huge step forward has been the
introduction of the RREP data sets, with which a large number
of registration methods has already been compared. However,
only theaccuracyof the participating methods can be studied, as
it is unlikely that anyone will submit results that are evidently in-
correct by visual inspection. An interesting observation from the
RREP study is that the methods by Maeset al. [57], Studholme
et al. [44], Thévenaz and Unser [97] and Viola and Wells [100],
although very differently implemented, all yield comparable re-
sults with respect to accuracy.

The challenges ahead lie, for example, in the field of curved
registration. As far as we know, only two of the curved reg-
istration methods reported explicitly include a physical model

of deformation. For many applications more than just a regu-
larization term will be required to achieve physically realistic
(let alone correct) deformations. Another interesting topic is the
registration of three images (or more). This is a problem in sub-
traction SPECT, for example, where two SPECT images may
need to be registered with an anatomical scan. All the papers
on registration of three images either assume two of the images
are already in register or this is achieved by first registering two
images and then the third. How to optimize two different trans-
formations simultaneously and whether there is a single global
optimum to this problem is another question. Challenging also
is the field of intraoperative registration, including patient po-
sition verification in radiotherapy and correction for tissue de-
formation, which usually requires fast matching to an image of
relatively poor quality and also entails deformations. Relatively
little research has as yet gone into intersubject registration, as
well as certain combinations of modalities. Ultrasound, to name
one of the most challenging, poses a serious problem for regis-
tration, because of the difference in imaging physics. It is based
on tissuetransitions, which results in a strong dominance of
edges in the resulting images. A final example of an area de-
manding further research is the question how to “correct” the
assumption of Shannon entropy that the gray values of neigh-
boring voxels are uncorrelated. In other words, how to include
the images’ spatial information.

From the continuing interest in the measure it can be deduced
that mutual information will not be abandoned in the near future.
It is already a successful registration measure for many applica-
tions and it can undoubtedly be adapted and extended to aid in
many more problems.

APPENDIX

HARTLEY ENTROPY

Hartley wanted a measure that increases linearly with length.
Furthermore, he assumed that given messages of lengthand

from and numbers of symbols, respectively, if
, i.e., the number of possible messages is equal, then the

amount of information per message is also equal.Ergo

His deduction of the definition of entropy is as follows:

The final equality holds only when , with an ar-
bitrary constant that should be equal for all . It can therefore
be omitted and results.
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